中文版 | English
题名

Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer

作者
通讯作者Dai,Qionghai; Yin,Hongfang; Xiao,Ying; Kong,Lingjie
发表日期
2023
DOI
发表期刊
EISSN
2522-5839
卷号5期号:4页码:408-420
摘要
Tissue biomarkers are crucial for cancer diagnosis, prognosis assessment and treatment planning. However, there are few known biomarkers that are robust enough to show true analytical and clinical value. Deep learning (DL)-based computational pathology can be used as a strategy to predict survival, but the limited interpretability and generalizability prevent acceptance in clinical practice. Here we present an interpretable human-centric DL-guided framework called PathFinder (Pathological-biomarker-finder) that can help pathologists to discover new tissue biomarkers from well-performing DL models. By combining sparse multi-class tissue spatial distribution information of whole slide images with attribution methods, PathFinder can achieve localization, characterization and verification of potential biomarkers, while guaranteeing state-of-the-art prognostic performance. Using PathFinder, we discovered that spatial distribution of necrosis in liver cancer, a long-neglected factor, has a strong relationship with patient prognosis. We therefore proposed two clinically independent indicators, including necrosis area fraction and tumour necrosis distribution, for practical prognosis, and verified their potential in clinical prognosis according to criteria derived from the Reporting Recommendations for Tumor Marker Prognostic Studies. Our work demonstrates a successful example of introducing DL into clinical practice in a knowledge discovery way, and the approach may be adopted in identifying biomarkers in various cancer types and modalities.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
STI2030-Major Projects[2022ZD0212000] ; National Natural Science Foundation of China (NSFC)["61831014","32021002"] ; Tsinghua-Foshan Innovation Special Fund (TFISF)[2021THFS0207] ; Guoqiang Institute, Tsinghua University[2021GQG1024] ; Beijing Tsinghua Changgung Hospital Fund[12021C1009]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000962715900001
出版者
EI入藏号
20231413855165
EI主题词
Cell death ; Deep learning ; Diagnosis ; Diseases ; Spatial distribution ; Tumors
EI分类号
Surveying:405.3 ; Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6 ; Biology:461.9 ; Engineering Graphics:902.1 ; Mathematics:921
Scopus记录号
2-s2.0-85151423540
来源库
Scopus
引用统计
被引频次[WOS]:36
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524273
专题南方科技大学第一附属医院
作者单位
1.State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instrument,Tsinghua University,Beijing,China
2.Department of Pathology,Beijing Tsinghua Changgung Hospital,School of Clinical Medicine,Tsinghua University,Beijing,China
3.School of Clinical Medicine,Tsinghua University,Beijing,China
4.Department of Automation,Tsinghua University,Beijing,China
5.IDG/McGovern Institute for Brain Research,Tsinghua University,Beijing,China
6.Division of Hepatobiliary and Pancreas Surgery,Department of General Surgery,Shenzhen People’s Hospital,The Second Clinical Medical College,Jinan University,Shenzhen,China
7.Division of Hepatobiliary and Pancreas Surgery,Department of General Surgery,The First Affiliated Hospital,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Liang,Junhao,Zhang,Weisheng,Yang,Jianghui,et al. Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer[J]. Nature Machine Intelligence,2023,5(4):408-420.
APA
Liang,Junhao.,Zhang,Weisheng.,Yang,Jianghui.,Wu,Meilong.,Dai,Qionghai.,...&Kong,Lingjie.(2023).Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer.Nature Machine Intelligence,5(4),408-420.
MLA
Liang,Junhao,et al."Deep learning supported discovery of biomarkers for clinical prognosis of liver cancer".Nature Machine Intelligence 5.4(2023):408-420.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liang,Junhao]的文章
[Zhang,Weisheng]的文章
[Yang,Jianghui]的文章
百度学术
百度学术中相似的文章
[Liang,Junhao]的文章
[Zhang,Weisheng]的文章
[Yang,Jianghui]的文章
必应学术
必应学术中相似的文章
[Liang,Junhao]的文章
[Zhang,Weisheng]的文章
[Yang,Jianghui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。