中文版 | English
题名

Learning Dual-Fused Modality-Aware Representations for RGBD Tracking

作者
通讯作者Zheng,Feng
DOI
发表日期
2023
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
13808 LNCS
页码
478-494
摘要
With the development of depth sensors in recent years, RGBD object tracking has received significant attention. Compared with the traditional RGB object tracking, the addition of the depth modality can effectively solve the target and background interference. However, some existing RGBD trackers use the two modalities separately and thus some particularly useful shared information between them is ignored. On the other hand, some methods attempt to fuse the two modalities by treating them equally, resulting in the missing of modality-specific features. To tackle these limitations, we propose a novel Dual-fused Modality-aware Tracker (termed DMTracker) which aims to learn informative and discriminative representations of the target objects for robust RGBD tracking. The first fusion module focuses on extracting the shared information between modalities based on cross-modal attention. The second aims at integrating the RGB-specific and depth-specific information to enhance the fused features. By fusing both the modality-shared and modality-specific information in a modality-aware scheme, our DMTracker can learn discriminative representations in complex tracking scenes. Experiments show that our proposed tracker achieves very promising results on challenging RGBD benchmarks. Code is available at https://github.com/ShangGaoG/DMTracker.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20231413841789
EI主题词
Computer vision
EI分类号
Computer Applications:723.5 ; Vision:741.2
Scopus记录号
2-s2.0-85151390839
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524275
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.University of Birmingham,Birmingham,United Kingdom
3.University of Electronic Science and Technology of China,Chengdu,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Gao,Shang,Yang,Jinyu,Li,Zhe,et al. Learning Dual-Fused Modality-Aware Representations for RGBD Tracking[C],2023:478-494.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gao,Shang]的文章
[Yang,Jinyu]的文章
[Li,Zhe]的文章
百度学术
百度学术中相似的文章
[Gao,Shang]的文章
[Yang,Jinyu]的文章
[Li,Zhe]的文章
必应学术
必应学术中相似的文章
[Gao,Shang]的文章
[Yang,Jinyu]的文章
[Li,Zhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。