题名 | Large Angle of Attack Prediction for Tail-Sitter Using ANN-Based Flush Air Data Sensing |
作者 | |
通讯作者 | Shan,Xiaowen |
DOI | |
发表日期 | 2023
|
ISSN | 1876-1100
|
EISSN | 1876-1119
|
会议录名称 | |
卷号 | 845 LNEE
|
页码 | 6722-6731
|
摘要 | Flush air data sensing systems (FADS) have been widely applied on aerial vehicles to provide air data estimation. Air data such as angle of attack (AoA) and air speed can be estimated through resolving pressure measurements of the sensor matrix. These parameters can be utilized to improve the performance of flight control system and realize better flight performance. Existing FADS studies and applications can estimate AoA in the range typically below 55 . It is suitable for traditional fixed wing unmanned aerial vehicles (UAVs), but some fixed wing vertical take off and landing (VTOL) UAVs have requirements in measuring air data under larger AoA. In this work, a FADS based on artificial neural network has been applied on a tail-sitter to provided large AoA estimation in low Reynolds number. Computational fluid dynamic analysis has been carried out to evaluate the critical AoA where stall region affects the sensor matrix. Wind tunnel tests have been further carried to collect data for network training. The trained network can provide estimation of large AoA at the range of −80 to 80 with acceptable accuracy. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20231413826699
|
EI主题词 | Aircraft control
; Angle of attack indicators
; Antennas
; Computational fluid dynamics
; Fixed wings
; Flight control systems
; Matrix algebra
; Neural networks
; Reynolds number
; VTOL/STOL aircraft
; Wind tunnels
|
EI分类号 | Fluid Flow, General:631.1
; Aerodynamics, General:651.1
; Wind Tunnels:651.2
; Aircraft and Avionics:652
; Aircraft, General:652.1
; Aircraft Instruments and Equipment:652.3
; Computer Applications:723.5
; Control Systems:731.1
; Algebra:921.1
; Mechanics:931.1
|
Scopus记录号 | 2-s2.0-85151130293
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/524283 |
专题 | 工学院_力学与航空航天工程系 前沿与交叉科学研究院 |
作者单位 | 1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Tianchun,L. Y.,Li,Xiaoda,Wu,Yongliang,et al. Large Angle of Attack Prediction for Tail-Sitter Using ANN-Based Flush Air Data Sensing[C],2023:6722-6731.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论