中文版 | English
题名

MepoGNN: Metapopulation Epidemic Forecasting with Graph Neural Networks

作者
通讯作者Jiang,Renhe
DOI
发表日期
2023
会议名称
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-26421-4
会议录名称
卷号
13718 LNAI
页码
453-468
会议日期
SEP 19-23, 2022
会议地点
null,Grenoble,FRANCE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Epidemic prediction is a fundamental task for epidemic control and prevention. Many mechanistic models and deep learning models are built for this task. However, most mechanistic models have difficulty estimating the time/region-varying epidemiological parameters, while most deep learning models lack the guidance of epidemiological domain knowledge and interpretability of prediction results. In this study, we propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting by incorporating Graph Neural Networks (GNNs) and graph learning mechanisms into Metapopulation SIR model. Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters and the underlying epidemic propagation graph from heterogeneous data in an end-to-end manner. Experiment results demonstrate our model outperforms the existing mechanistic models and deep learning models by a large margin. Furthermore, the analysis on the learned parameters demonstrates the high reliability and interpretability of our model and helps better understanding of epidemic spread. Our model and data have already been public on GitHub https://github.com/deepkashiwa20/MepoGNN.git.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
JST SICORP[JPMJSC2104]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号
WOS:000999152800028
Scopus记录号
2-s2.0-85150952465
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524293
专题南方科技大学
作者单位
1.The University of Tokyo,Tokyo,Japan
2.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Cao,Qi,Jiang,Renhe,Yang,Chuang,et al. MepoGNN: Metapopulation Epidemic Forecasting with Graph Neural Networks[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023:453-468.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cao,Qi]的文章
[Jiang,Renhe]的文章
[Yang,Chuang]的文章
百度学术
百度学术中相似的文章
[Cao,Qi]的文章
[Jiang,Renhe]的文章
[Yang,Chuang]的文章
必应学术
必应学术中相似的文章
[Cao,Qi]的文章
[Jiang,Renhe]的文章
[Yang,Chuang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。