题名 | MepoGNN: Metapopulation Epidemic Forecasting with Graph Neural Networks |
作者 | |
通讯作者 | Jiang,Renhe |
DOI | |
发表日期 | 2023
|
会议名称 | European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-26421-4
|
会议录名称 | |
卷号 | 13718 LNAI
|
页码 | 453-468
|
会议日期 | SEP 19-23, 2022
|
会议地点 | null,Grenoble,FRANCE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Epidemic prediction is a fundamental task for epidemic control and prevention. Many mechanistic models and deep learning models are built for this task. However, most mechanistic models have difficulty estimating the time/region-varying epidemiological parameters, while most deep learning models lack the guidance of epidemiological domain knowledge and interpretability of prediction results. In this study, we propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting by incorporating Graph Neural Networks (GNNs) and graph learning mechanisms into Metapopulation SIR model. Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters and the underlying epidemic propagation graph from heterogeneous data in an end-to-end manner. Experiment results demonstrate our model outperforms the existing mechanistic models and deep learning models by a large margin. Furthermore, the analysis on the learned parameters demonstrates the high reliability and interpretability of our model and helps better understanding of epidemic spread. Our model and data have already been public on GitHub https://github.com/deepkashiwa20/MepoGNN.git. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | JST SICORP[JPMJSC2104]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
; Computer Science, Interdisciplinary Applications
|
WOS记录号 | WOS:000999152800028
|
Scopus记录号 | 2-s2.0-85150952465
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/524293 |
专题 | 南方科技大学 |
作者单位 | 1.The University of Tokyo,Tokyo,Japan 2.Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Cao,Qi,Jiang,Renhe,Yang,Chuang,et al. MepoGNN: Metapopulation Epidemic Forecasting with Graph Neural Networks[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023:453-468.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论