中文版 | English
题名

Detecting latent tuberculosis infection with a breath test using mass spectrometer: A pilot cross-sectional study

作者
通讯作者Zhang,Peize
发表日期
2023
DOI
发表期刊
ISSN
1881-7815
EISSN
1881-7823
卷号17期号:1页码:73-77
摘要
Mycobacterium tuberculosis (M.tb) infects a quarter of the world's population and may progress to active tuberculosis (ATB). There is no gold standard for diagnosing latent tuberculosis infection (LTBI). Some immunodiagnostic tests are recommended to detect LTBI but can not distinguish ATB from LTBI. The breath test is useful for diagnosing ATB compared to healthy subjects but was never studied for LTBI. This proof-of-concept study (Chinese Clinical Trials Registry number: ChiCTR2200058346) was the first to explore a novel, rapid, and simple LTBI detection method via breath test on high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS). The case group of LTBI subjects (n = 185) and the control group (n = 250), which included ATB subgroup (n = 121) and healthy control (HC) subgroup (n = 129), were enrolled. The LTBI detection model indicated that a breath test via HPPI-TOFMS could distinguish LTBI from the control with a sensitivity of 80.0% (95% CI: 67.6%, 92.4%) and a specificity of 80.8% (95% CI: 71.8%, 89.9%). Nevertheless, further intensive studies with a larger sample size are required for clinical application.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[82070016] ; National Key Research and Development Plan["2020YFA0907200","2019YFC0840602"] ; Guangdong Foundation for Basic and Applied Basic Research[2019B1515120041] ; Guangdong Provincial Clinical Research Center for Tuberculosis Project[2020B1111170014] ; Shenzhen Scientific and Technological Foundation["KCXFZ202002011007083","JCYJ20180228162112889"] ; Summit Plan for Foshan High- level Hospital Construction[FSSYKF-2020001] ; Shenzhen Third People's Hospital[G2022051]
WOS研究方向
Life Sciences & Biomedicine - Other Topics
WOS类目
Biology
WOS记录号
WOS:000908367100001
出版者
Scopus记录号
2-s2.0-85150079422
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524307
专题南方科技大学第二附属医院
作者单位
1.Division Two of Pulmonary Diseases Department,The Third People's Hospital of Shenzhen,National clinical research center for infectious disease,Southern University of Science and Technology,Shenzhen,Guangdong,China
2.Breax Laboratory,PCAB Research Center of Breath and Metabolism,Beijing,China
3.Guangdong Key Lab for Diagnosis & Treatment of Emerging Infectious Disease,The Third People's Hospital of Shenzhen,National clinical research center for infectious disease,Southern University of Science and Technology,Shenzhen,Guangdong,China
4.Medical Examination Department,The Third People's Hospital of Shenzhen,National clinical research center for infectious disease,Southern University of Science and Technology,Shenzhen,Guangdong,China
5.Pulmonary Diseases Out-patient Department,The Third People's Hospital of Shenzhen,National clinical research center for infectious disease,Southern University of Science and Technology,Shenzhen,Guangdong,China
第一作者单位南方科技大学第二附属医院
通讯作者单位南方科技大学第二附属医院
第一作者的第一单位南方科技大学第二附属医院
推荐引用方式
GB/T 7714
Fu,Liang,Feng,Yong,Ren,Tantan,et al. Detecting latent tuberculosis infection with a breath test using mass spectrometer: A pilot cross-sectional study[J]. BioScience Trends,2023,17(1):73-77.
APA
Fu,Liang.,Feng,Yong.,Ren,Tantan.,Yang,Min.,Yang,Qianting.,...&Deng,Guofang.(2023).Detecting latent tuberculosis infection with a breath test using mass spectrometer: A pilot cross-sectional study.BioScience Trends,17(1),73-77.
MLA
Fu,Liang,et al."Detecting latent tuberculosis infection with a breath test using mass spectrometer: A pilot cross-sectional study".BioScience Trends 17.1(2023):73-77.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fu,Liang]的文章
[Feng,Yong]的文章
[Ren,Tantan]的文章
百度学术
百度学术中相似的文章
[Fu,Liang]的文章
[Feng,Yong]的文章
[Ren,Tantan]的文章
必应学术
必应学术中相似的文章
[Fu,Liang]的文章
[Feng,Yong]的文章
[Ren,Tantan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。