中文版 | English
题名

Defending Adversarial Examples by Negative Correlation Ensemble

作者
通讯作者Luo,Wenjian
DOI
发表日期
2022
ISSN
1865-0929
EISSN
1865-0937
会议录名称
卷号
1745 CCIS
页码
424-438
摘要
The security issues in DNNs, such as adversarial examples, have attracted much attention. Adversarial examples refer to the examples which are capable to induce the DNNs return incorrect predictions by introducing carefully designed perturbations. Obviously, adversarial examples bring great security risks to the real-world applications of deep learning. Recently, some defence approaches against adversarial examples have been proposed. However, the performance of these approaches are still limited. In this paper, we propose a new ensemble defence approach named the Negative Correlation Ensemble (NCEn), which achieves competitive results by making each member of the ensemble negatively correlated in gradient direction and gradient magnitude. NCEn can reduce the transferability of the adversarial samples among the members in ensemble. Extensive experiments have been conducted, and the results demonstrate that NCEn could improve the adversarial robustness of ensembles effectively.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
Scopus记录号
2-s2.0-85148684391
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524334
专题南方科技大学
作者单位
1.School of Computer Science and Technology,Harbin Institute of Technology,Shenzhen,Guangdong,518055,China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,School of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
推荐引用方式
GB/T 7714
Luo,Wenjian,Zhang,Hongwei,Kong,Linghao,et al. Defending Adversarial Examples by Negative Correlation Ensemble[C],2022:424-438.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Luo,Wenjian]的文章
[Zhang,Hongwei]的文章
[Kong,Linghao]的文章
百度学术
百度学术中相似的文章
[Luo,Wenjian]的文章
[Zhang,Hongwei]的文章
[Kong,Linghao]的文章
必应学术
必应学术中相似的文章
[Luo,Wenjian]的文章
[Zhang,Hongwei]的文章
[Kong,Linghao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。