中文版 | English
题名

Disentangling Task Relations for Few-shot Text Classification via Self-Supervised Hierarchical Task Clustering

作者
通讯作者Zhang,Yu
发表日期
2022
会议录名称
页码
5265-5276
摘要
Few-Shot Text Classification (FSTC) imitates humans to learn a new text classifier efficiently with only few examples, by leveraging prior knowledge from historical tasks. However, most prior works assume that all the tasks are sampled from a single data source, which cannot adapt to real-world scenarios where tasks are heterogeneous and lie in different distributions. As such, existing methods may suffer from their globally knowledge-shared mechanisms to handle the task heterogeneity. On the other hand, inherent task relation are not explicitly captured, making task knowledge unorganized and hard to transfer to new tasks. Thus, we explore a new FSTC setting where tasks can come from a diverse range of data sources. To address the task heterogeneity, we propose a self-supervised hierarchical task clustering (SS-HTC) method. SS-HTC not only customizes cluster-specific knowledge by dynamically organizing heterogeneous tasks into different clusters in hierarchical levels but also disentangles underlying relations between tasks to improve the interpretability. Extensive experiments on five public FSTC benchmark datasets demonstrate the effectiveness of SS-HTC.
学校署名
通讯
语种
英语
相关链接[Scopus记录]
资助项目
National Natural Science Foundation of China[62076118];
Scopus记录号
2-s2.0-85140740164
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/524337
专题南方科技大学
作者单位
1.University of Southern California,United States
2.Amazon.com Inc,United States
3.City University of Hong Kong,Hong Kong
4.Southern University of Science and Technology,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Zha,Juan,Li,Zheng,Wei,Ying,et al. Disentangling Task Relations for Few-shot Text Classification via Self-Supervised Hierarchical Task Clustering[C],2022:5265-5276.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zha,Juan]的文章
[Li,Zheng]的文章
[Wei,Ying]的文章
百度学术
百度学术中相似的文章
[Zha,Juan]的文章
[Li,Zheng]的文章
[Wei,Ying]的文章
必应学术
必应学术中相似的文章
[Zha,Juan]的文章
[Li,Zheng]的文章
[Wei,Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。