中文版 | English
题名

A Two-stage Raman Imaging Denoising Algorithm Based on Deep Learning

作者
DOI
发表日期
2022
会议名称
Asia Communications and Photonics Conference (ACP) / International Conference on Information Photonics and Optical Communications (IPOC)
ISSN
2162-108X
ISBN
978-1-6654-8156-4
会议录名称
页码
2096-2099
会议日期
5-8 Nov. 2022
会议地点
Shenzhen, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
For the problem of low Signal-to-Noise Ratio (SNR) of the image reconstructed from Raman spectra, this paper proposes a two-stage denoising algorithm based on deep learning, including spectrum denoising and image denoising. Because spectra and images of the same sample are scarce, the spectrum denoising algorithm and the image denoising one are trained on two irrelevant dataset. Denoising and baseline correction are performed on the raw Raman spectra using 1D-ResUNet. The low SNR images are denoised by Reversed Convolutional Block Attention Module UNet (RCBAM-UNet). Experimental results showed that the Mean Squared Error (MSE) between the denoised spectrum processed by our method and the ground truth decreased by 10(3)-10(4), when compared to the raw data. The quantitative results of image denoising on Structural Similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR) are 98.4% and 39.7, respectively. The performance of our two-stage algorithm on the testing dataset (an independent dataset) showed increased SNR and Contrast to Noise Ratio (CNR) in Raman imaging denoising. Our study provides an efficient method for the improvement of Raman image quality.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China[62220106006]
WOS研究方向
Engineering ; Optics ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Optics ; Telecommunications
WOS记录号
WOS:001000552100542
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10088904
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/527444
专题工学院
工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
3.Innermedical Co, Shenzhen, China
第一作者单位工学院;  电子与电气工程系
第一作者的第一单位工学院;  电子与电气工程系
推荐引用方式
GB/T 7714
Quan Tang,Jiaqi Hu,Jinna Chen,et al. A Two-stage Raman Imaging Denoising Algorithm Based on Deep Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:2096-2099.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Quan Tang]的文章
[Jiaqi Hu]的文章
[Jinna Chen]的文章
百度学术
百度学术中相似的文章
[Quan Tang]的文章
[Jiaqi Hu]的文章
[Jinna Chen]的文章
必应学术
必应学术中相似的文章
[Quan Tang]的文章
[Jiaqi Hu]的文章
[Jinna Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。