题名 | A Two-stage Raman Imaging Denoising Algorithm Based on Deep Learning |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | Asia Communications and Photonics Conference (ACP) / International Conference on Information Photonics and Optical Communications (IPOC)
|
ISSN | 2162-108X
|
ISBN | 978-1-6654-8156-4
|
会议录名称 | |
页码 | 2096-2099
|
会议日期 | 5-8 Nov. 2022
|
会议地点 | Shenzhen, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | For the problem of low Signal-to-Noise Ratio (SNR) of the image reconstructed from Raman spectra, this paper proposes a two-stage denoising algorithm based on deep learning, including spectrum denoising and image denoising. Because spectra and images of the same sample are scarce, the spectrum denoising algorithm and the image denoising one are trained on two irrelevant dataset. Denoising and baseline correction are performed on the raw Raman spectra using 1D-ResUNet. The low SNR images are denoised by Reversed Convolutional Block Attention Module UNet (RCBAM-UNet). Experimental results showed that the Mean Squared Error (MSE) between the denoised spectrum processed by our method and the ground truth decreased by 10(3)-10(4), when compared to the raw data. The quantitative results of image denoising on Structural Similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR) are 98.4% and 39.7, respectively. The performance of our two-stage algorithm on the testing dataset (an independent dataset) showed increased SNR and Contrast to Noise Ratio (CNR) in Raman imaging denoising. Our study provides an efficient method for the improvement of Raman image quality. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62220106006]
|
WOS研究方向 | Engineering
; Optics
; Telecommunications
|
WOS类目 | Engineering, Electrical & Electronic
; Optics
; Telecommunications
|
WOS记录号 | WOS:001000552100542
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10088904 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/527444 |
专题 | 工学院 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, China 2.School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China 3.Innermedical Co, Shenzhen, China |
第一作者单位 | 工学院; 电子与电气工程系 |
第一作者的第一单位 | 工学院; 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Quan Tang,Jiaqi Hu,Jinna Chen,et al. A Two-stage Raman Imaging Denoising Algorithm Based on Deep Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:2096-2099.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论