题名 | An Energy-Efficient Mixed-Bit ReRAM-based Computing-in-Memory CNN Accelerator with Fully Parallel Readout |
作者 | |
DOI | |
发表日期 | 2022
|
会议名称 | IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)
|
ISBN | 978-1-6654-5080-5
|
会议录名称 | |
页码 | 1-5
|
会议日期 | 11-13 Nov. 2022
|
会议地点 | Shenzhen, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Computing-In-memory (CIM) accelerators have the characteristics of storage and computing integration, which has the potential to break through the limit of Moore's law and the bottleneck of Von-Neumann architecture. However, the performance of CIM accelerators is still limited by conventional CNN architectures and inefficient readouts. To increase energy-efficient performance, optimized CNN model is required and low-power fully parallel readout is necessary for edge-computing hardware. In this work, an ReRAM-based CNN accelerator is designed. Mixed-bit 1 similar to 8-bit operations are supported by bitwidth configuration scheme for implementing Neural Architecture Search (NAS)-optimized multi-bit CNNs. Besides, energy-efficient fully parallel readout is achieved by variation-reduction accumulation mechanism and low-power readout circuits. Benchmarks show that the proposed ReRAM accelerator can achieve peak energy efficiency of 2490.32 TOPS/W for 1-bit operation and average energy efficiency of 479.37 TOPS/W for 1 similar to 8-bit operations when evaluating NAS-optimized multi-bitwidth CNNs. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Key Research and Development Program of the Ministry of science and technology[2021YFE0204000]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000987045300108
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10090365 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/527456 |
专题 | 工学院_深港微电子学院 |
作者单位 | School of Microelectronics Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Dingbang Liu,Wei Mao,Haoxiang Zhou,et al. An Energy-Efficient Mixed-Bit ReRAM-based Computing-in-Memory CNN Accelerator with Fully Parallel Readout[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论