中文版 | English
题名

TLCD: A Transformer based Loop Closure Detection for Robotic Visual SLAM

作者
DOI
发表日期
2022-07-11
ISBN
978-1-6654-8307-0
会议录名称
会议日期
9-11 July 2022
会议地点
Guilin, China
摘要
Loop closure detection (LCD) can effectively correct errors in visual odometry. It is thereby a critical part in robotic visual simultaneous localization and mapping (SLAM) system, which is widely used in modern robotic systems such as sweeping robots and drones. In this paper, we propose a transformer-based loop closure detection algorithm (TLCD), which employs a distillation transformer as backbone to extract global features, and is combined with a sequence matching as back-end processing of principal component analysis (PCA) algorithm. TLCD can accurately provide Precision-Recall curve based on several public datasets including CityCentre and New-College datasets. Results show that TLCD’s average accuracy is up to 16.91% higher than the traditional LCD method. It is also about 3.18% higher accuracy than the state-of-the-art convolutional neural network (CNN) based LCD method.
学校署名
其他
相关链接[IEEE记录]
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/527489
专题工学院
工学院_深港微电子学院
作者单位
Microelectronics College of Engineering Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong, China
推荐引用方式
GB/T 7714
Chenghao Li,Hongwei Ren,Minjie Bi,et al. TLCD: A Transformer based Loop Closure Detection for Robotic Visual SLAM[C],2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
TLCD_A_Transformer_b(2417KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chenghao Li]的文章
[Hongwei Ren]的文章
[Minjie Bi]的文章
百度学术
百度学术中相似的文章
[Chenghao Li]的文章
[Hongwei Ren]的文章
[Minjie Bi]的文章
必应学术
必应学术中相似的文章
[Chenghao Li]的文章
[Hongwei Ren]的文章
[Minjie Bi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。