中文版 | English
题名

Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network

作者
通讯作者Wang, Zheng
发表日期
2023-03-01
DOI
发表期刊
ISSN
2169-5172
EISSN
2169-5180
卷号10期号:4页码:825-837
摘要
Compared with rigid robots, soft robots are inherently compliant and have advantages in the tasks requiring flexibility and safety. But sensing the high dimensional body deformation of soft robots is a challenge. Encasing soft strain sensors into the internal body of soft robots is the most popular solution to address this challenge. But most of them usually suffer from problems like nonlinearity, hysteresis, and fabrication complexity. To endow the soft robots with body movement awareness, this work presents a bioinspired architecture by taking cues from human proprioception system. Differing from the popular usage of smart material-based sensors embedded in soft actuators, we created a synthetic analog to the human muscle system, using paralleled soft pneumatic chambers to serve as receptors for sensing body deformation. We proposed to build the system with redundant receptors and explored deep learning tools for generating the kinematic model. Based on the proposed methodology, we demonstrated the design of three degrees of freedom continuum joint and how its kinematic model was learned from the unified pressure information of the actuators and receptors. In addition, we investigated the response of the soft system to receptor failures and presented both hardware and software level solutions for achieving graceful degradation. This approach offers an alternative to enable soft robots with proprioception capability, which will be useful for closed-loop control and interaction with environment.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Science, Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20200811143601004] ; NSFC[51975268]
WOS研究方向
Robotics
WOS类目
Robotics
WOS记录号
WOS:000961052800001
出版者
EI入藏号
20232714343012
EI主题词
Kinematics ; Pneumatic actuators ; Pneumatics ; Recurrent neural networks ; Robots ; Sensory perception ; Signal encoding
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Pneumatics:632.3 ; Information Theory and Signal Processing:716.1 ; Robotics:731.5 ; Control Equipment:732.1 ; Mechanics:931.1
来源库
Web of Science
引用统计
被引频次[WOS]:13
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/527719
专题工学院_机械与能源工程系
作者单位
1.Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
2.Southern Univ Sci & Technol, Dept Mech & Energy Engn, 605 Innovat Pk 7,1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
通讯作者单位机械与能源工程系
推荐引用方式
GB/T 7714
Wang, Liangliang,Lam, James,Chen, Xiaojiao,et al. Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network[J]. SOFT ROBOTICS,2023,10(4):825-837.
APA
Wang, Liangliang.,Lam, James.,Chen, Xiaojiao.,Li, Jing.,Zhang, Runzhi.,...&Wang, Zheng.(2023).Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network.SOFT ROBOTICS,10(4),825-837.
MLA
Wang, Liangliang,et al."Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network".SOFT ROBOTICS 10.4(2023):825-837.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Liangliang]的文章
[Lam, James]的文章
[Chen, Xiaojiao]的文章
百度学术
百度学术中相似的文章
[Wang, Liangliang]的文章
[Lam, James]的文章
[Chen, Xiaojiao]的文章
必应学术
必应学术中相似的文章
[Wang, Liangliang]的文章
[Lam, James]的文章
[Chen, Xiaojiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。