中文版 | English
题名

Study on predictions of spray target position of gasoline direct injection injectors with multi-hole using physical model and machine learning

作者
通讯作者Park,Suhan
发表日期
2023-08-01
DOI
发表期刊
ISSN
0378-3820
EISSN
1873-7188
卷号247
摘要
A lot of effort is being invested in improving the performance of injectors, the core components of gasoline direct injection (GDI) engines, such as injection stability and accuracy. The purpose of this study is to establish models that can predict spray targeting according to the design parameters of GDI injector, to improve the injection accuracy and enhance the engine performance. First, this study used laser sheet beam visualization technology to measure the spray targeting images of injectors with different design parameters in different cross-sections and obtained the spray targeting coordinates through image post-processing. Then, using the experimental data, two different approaches (empirical formula and machine learning), were used to create models for predicting spray targeting, and their applicability was compared. The research results showed that both the physical model and the machine learning model had a prediction accuracy of >0.98 in terms of R, but the physical model had a lower prediction error in terms of the root mean square error (RMSE). Further, the tendency of the target coordinate to change is proportional to 0.2 power of the injection pressure (P), −0.1 power of ratio of hole length to hole diameter ((L/D)), and − 1.5 power of the angle between axes of two holes (θ).
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Basic Science Research Program[2019R1A2C1089494] ; International Cooperation Program - National Research Foundation of Korea (NRF) under the India-Korea International Cooperation Program[2020K1A3A1A19088692]
WOS研究方向
Chemistry ; Energy & Fuels ; Engineering
WOS类目
Chemistry, Applied ; Energy & Fuels ; Engineering, Chemical
WOS记录号
WOS:000984537800001
出版者
EI入藏号
20231613896758
EI主题词
Direct injection ; Engines ; Forecasting ; Gasoline ; Mean square error
EI分类号
Fuel Combustion and Flame Research:521 ; Liquid Fuels:523 ; Artificial Intelligence:723.4 ; Mathematical Statistics:922.2
ESI学科分类
CHEMISTRY
Scopus记录号
2-s2.0-85152580108
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/528177
专题工学院_力学与航空航天工程系
作者单位
1.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China
2.Department of Mechanical Convergence Engineering,Graduate School of Hanyang University,Seoul,222 Wangsimni-ro, Seongdong-gu,04763,South Korea
3.School of Mechanical Engineering,Hanyang University,Seoul,222 Wangsimni-ro, Seongdong-gu,04763,South Korea
4.Product Design Team 2,Hyundai-Kefico,Gunpo-si, Gyeonggi-do,South Korea
5.School of Mechanical and Aerospace Engineering,Konkuk University,Seoul,120 Neungdong-ro, Gwangjin-gu,05029,South Korea
第一作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Chang,Mengzhao,Jeong,Minuk,Park,Sungwook,et al. Study on predictions of spray target position of gasoline direct injection injectors with multi-hole using physical model and machine learning[J]. Fuel Processing Technology,2023,247.
APA
Chang,Mengzhao,Jeong,Minuk,Park,Sungwook,Kim,Hyung Ik,Park,Jeong Hwan,&Park,Suhan.(2023).Study on predictions of spray target position of gasoline direct injection injectors with multi-hole using physical model and machine learning.Fuel Processing Technology,247.
MLA
Chang,Mengzhao,et al."Study on predictions of spray target position of gasoline direct injection injectors with multi-hole using physical model and machine learning".Fuel Processing Technology 247(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chang,Mengzhao]的文章
[Jeong,Minuk]的文章
[Park,Sungwook]的文章
百度学术
百度学术中相似的文章
[Chang,Mengzhao]的文章
[Jeong,Minuk]的文章
[Park,Sungwook]的文章
必应学术
必应学术中相似的文章
[Chang,Mengzhao]的文章
[Jeong,Minuk]的文章
[Park,Sungwook]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。