中文版 | English
题名

PathTR: Context-Aware Memory Transformer for Tumor Localization in Gigapixel Pathology Images

作者
通讯作者Luo, Lin
DOI
发表日期
2023
会议名称
16th Asian Conference on Computer Vision, ACCV 2022
ISSN
0302-9743
EISSN
1611-3349
ISBN
9783031263507
会议录名称
卷号
13846 LNCS
页码
115-131
会议日期
December 4, 2022 - December 8, 2022
会议地点
Macao, China
出版者
摘要
With the development of deep learning and computational pathology, whole-slide images (WSIs) are widely used in clinical diagnosis. A WSI, which refers to the scanning of conventional glass slides into digital slide images, usually contains gigabytes of pixels. Most existing methods in computer vision process WSIs as many individual patches, where the model infers the patches one by one to synthesize the final results, neglecting the intrinsic WSI-wise global correlations among the patches. In this paper, we propose the PATHology TRansformer (PathTR), which utilizes the global information of WSI combined with the local ones. In PathTR, the local context is first aggregated by a self-attention mechanism, and then we design a recursive mechanism to encode the global context as additional states to build the end to end model. Experiments on detecting lymph-node tumor metastases for breast cancer show that the proposed PathTR achieves the Free-response Receiver Operating Characteristic Curves (FROC) score of 87.68%, which outperforms the baseline and NCRF method with +8.99% and +7.08%, respectively. Our method also achieves a significant 94.25% sensitivity at 8 false positives per image.
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
学校署名
通讯
语种
英语
收录类别
资助项目
Acknowledgement. This research was supported in part by the Foundation of Shen-zhen Science and Technology Innovation Committee (JCYJ20180507181527806). We also thank Qiuchuan Liang (Beijing Haidian Kaiwen Academy, Beijing, China) for preprocessing data.This research was supported in part by the Foundation of Shenzhen Science and Technology Innovation Committee (JCYJ20180507181527806). We also thank Qiuchuan Liang (Beijing Haidian Kaiwen Academy, Beijing, China) for preprocessing data.
EI入藏号
20231113734213
EI主题词
Deep learning ; Diagnosis ; Tumors
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6
来源库
EV Compendex
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/531330
专题南方科技大学
作者单位
1.Peking University, Beijing, China
2.Beijing Institute of Collaborative Innovation, Beijing, China
3.Southern University of Science and Technology, Shenzhen, China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Qin, Wenkang,Xu, Rui,Jiang, Shan,et al. PathTR: Context-Aware Memory Transformer for Tumor Localization in Gigapixel Pathology Images[C]:Springer Science and Business Media Deutschland GmbH,2023:115-131.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qin, Wenkang]的文章
[Xu, Rui]的文章
[Jiang, Shan]的文章
百度学术
百度学术中相似的文章
[Qin, Wenkang]的文章
[Xu, Rui]的文章
[Jiang, Shan]的文章
必应学术
必应学术中相似的文章
[Qin, Wenkang]的文章
[Xu, Rui]的文章
[Jiang, Shan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。