[1] HUANG Z, SU W, PENG Y, et al. Rayleigh wave tomography of China and adjacent regions[J/OL]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2): 2073. DOI: 10.1029/2001JB001696.
[2] GOSSELIN J M, AUDET P, SCHAEFFER A J, et al. Azimuthal anisotropy in Bayesian surface wave tomography: Application to northern Cascadia and Haida Gwaii, British Columbia[J/OL]. Geophysical Journal International, 2021, 224(3): 1724-1741. DOI: 10.1093/gji/ggaa561.
[3] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise[J/OL]. Science, 2005, 307(5715): 1615-1618. DOI: 10.1126/science.1108339.
[4] CAMPILLO M, PAUL A. Long-Range Correlations in the Diffuse Seismic Coda[J/OL]. Science, 2003, 299(5606): 547-549. DOI: 10.1126/science.1078551.
[5] ROUX P, SABRA K G, KUPERMAN W A, et al. Ambient noise cross correlation in free space: Theoretical approach[J/OL]. The Journal of the Acoustical Society of America, 2005, 117(1): 79-84. DOI: 10.1121/1.1830673.
[6] SHAPIRO N M, CAMPILLO M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J/OL]. Geophysical Research Letters, 2004, 31(7): L07614. DOI: 10.1029/2004GL019491.
[7] SNIEDER R. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase[J/OL]. Physical Review E, 2004, 69(4): 046610. DOI: 10.1103/PhysRevE.69.046610.
[8] YAO H, van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps[J/OL]. Geophysical Journal International, 2006, 166(2): 732-744. DOI: 10.1111/j.1365-246X.2006.03028.x.
[9] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise Rayleigh wave tomography across Europe[J/OL]. Geophysical Journal International, 2007, 168(1): 259-274. DOI: 10.1111/j.1365-246X.2006.03203.x.
[10] GOUÉDARD P, ROUX P, CAMPILLO M. Small-scale seismic inversion using surface waves extracted from noise cross correlation[J/OL]. The Journal of the Acoustical Society of America, 2008, 123(3): EL26-EL31. DOI: 10.1121/1.2838251.
[11] YAO H, BEGHEIN C, van der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - II. Crustal and upper-mantle structure[J/OL]. Geophysical Journal International, 2008, 173(1): 205-219. DOI: 10.1111/j.1365-246X.2007.03696.x.
[12] SHEN W, RITZWOLLER M H. Crustal and uppermost mantle structure beneath the United States[J/OL]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4306-4342. DOI: 10.1002/2016JB012887.
[13] MOSCHETTI M P, RITZWOLLER M H, LIN F, et al. Seismic evidence for widespread western-US deep-crustal deformation caused by extension[J/OL]. Nature, 2010, 464(7290): 885-889. DOI: 10.1038/nature08951.
[14] BEM T S, LIU C, YAO H, et al. Azimuthally Anisotropic Structure in the Crust and Uppermost Mantle in Central East China and Its Significance to Regional Deformation Around the Tan-Lu Fault Zone[J/OL]. Journal of Geophysical Research: Solid Earth, 2022, 127(3): e2021JB023532. DOI: 10.1029/2021JB023532.
[15] XIA J, MILLER R D, PARK C B. Advantages of calculating shear-wave velocity from surface waves with higher modes[C/OL]//SEG Technical Program Expanded Abstracts 2000. Society of Exploration Geophysicists, 2000: 1295-1298. DOI: 10.1190/1.1815633.
[16] WU F Y, YANG J H, XU Y G, et al. Destruction of the North China Craton in the Mesozoic[J/OL]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 173-195. DOI: 10.1146/annurev-earth-053018-060342.
[17] LEE C T A, LUFFI P, CHIN E J. Building and Destroying Continental Mantle[J/OL]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 59-90. DOI: 10.1146/annurev-earth-040610-133505.
[18] FOLEY S F. Rejuvenation and erosion of the cratonic lithosphere[J/OL]. Nature Geoscience, 2008, 1(8): 503-510. DOI: 10.1038/ngeo261.
[19] GAO S, RUDNICK R L, YUAN H L, et al. Recycling lower continental crust in the North China craton[J/OL]. Nature, 2004, 432(7019): 892-897. DOI: 10.1038/nature03162.
[20] GRIFFIN W L, ZHANG A, O’REILLY S Y, et al. Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton[M/OL]//FLOWER M F J, CHUNG S L, LO C H, et al. Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union (AGU), 1998: 107-126. DOI: 10.1029/GD027p0107.
[21] LIU D Y, NUTMAN A P, COMPSTON W, et al. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton[J/OL]. Geology, 1992, 20(4): 339-342. DOI: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2.
[22] ZHAO G, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J/OL]. Precambrian Research, 2005, 136(2): 177-202. DOI: 10.1016/j.precamres.2004.10.002.
[23] ZHAO G, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P–T path constraints and tectonic evolution[J/OL]. Precambrian Research, 2001, 107(1-2): 45-73. DOI: 10.1016/S0301-9268(00)00154-6.
[24] ZHAO G. Palaeoproterozoic assembly of the North China Craton[J/OL]. Geological Magazine, 2001, 138(1): 87-91. DOI: 10.1017/S0016756801005040.
[25] SANTOSH M, ZHAO D, KUSKY T. Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography[J/OL]. Journal of Geodynamics, 2010, 49(1): 39-53. DOI: 10.1016/j.jog.2009.09.043.
[26] XIAO W, WINDLEY B F, YONG Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J/OL]. Journal of Asian Earth Sciences, 2009, 35(3-4): 323-333. DOI: 10.1016/j.jseaes.2008.10.001.
[27] XIAO W, WINDLEY B F, HAO J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J/OL]. Tectonics, 2003, 22(6): 1069. DOI: 10.1029/2002TC001484.
[28] DAVIS G A, ZHENG Y, WANG C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[M/OL]//HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation. Geological Society of America, 2001: 171-197. DOI: 10.1130/0-8137-1194-0.171.
[29] MENG Q R, ZHANG G W. Geologic framework and tectonic evolution of the Qinling orogen, central China[J/OL]. Tectonophysics, 2000, 323(3-4): 183-196. DOI: 10.1016/S0040-1951(00)00106-2.
[30] TANG J, XU W, WANG F, et al. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia[J/OL]. Science China Earth Sciences, 2018, 61(5): 527-559. DOI: 10.1007/s11430-017-9174-1.
[31] LIU K, ZHANG J, XIAO W, et al. A review of magmatism and deformation history along the NE Asian margin from ca. 95 to 30 Ma: Transition from the Izanagi to Pacific plate subduction in the early Cenozoic[J/OL]. Earth-Science Reviews, 2020, 209: 103317. DOI: 10.1016/j.earscirev.2020.103317.
[32] MARUYAMA S, ISOZAKI Y, KIMURA G, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present[J/OL]. The Island Arc, 1997, 6(1): 121-142. DOI: 10.1111/j.1440-1738.1997.tb00043.x.
[33] SMITH A D. A plate model for Jurassic to Recent intraplate volcanism in the Pacific Ocean basin[M/OL]//FOULGER G R, JURDY D M. Plates, Plumes and Planetary Processes. Geological Society of America, 2007: 471-495. DOI: 10.1130/2007.2430(23).
[34] KUSKY T M, WINDLEY B F, ZHAI M G. Tectonic evolution of the North China Block: From orogen to craton to orogen[M/OL]//ZHAI M G, WINDLEY B F, KUSKY T M, et al. Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geological Society of London, 2007: 1-34. DOI: 10.1144/SP280.1.
[35] MENZIES M A, FAN W, ZHANG M. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China[M/OL]//PRICHARD H M, ALABASTER T, HARRIS N B W, et al. Magmatic Processes and Plate Tectonics: volume 76. Geological Society, London, Special Publications, 1993: 71-81. DOI: 10.1144/GSL.SP.1993.076.01.04.
[36] GAO S, RUDNICK R L, CARLSON R W, et al. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton[J/OL]. Earth and Planetary Science Letters, 2002, 198(3-4): 307-322. DOI: 10.1016/S0012-821X(02)00489-2.
[37] FAN W M, ZHANG H F, BAKER J, et al. On and Off the North China Craton: Where is the Archaean Keel?[J/OL]. Journal of Petrology, 2000, 41(7): 933-950. DOI: 10.1093/petrology/41.7.933.
[38] XU Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism[J/OL]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9-10): 747-757. DOI: 10.1016/S1464-1895(01)00124-7.
[39] GUO Z, AFONSO J C, QASHQAI M T, et al. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion: Extent and causes of cratonic lithosphere modification[J/OL]. Gondwana Research, 2016, 37: 252-265. DOI: 10.1016/j.gr.2016.07.002.
[40] CHEN L, ZHENG T, XU W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration[J/OL]. Journal of Geophysical Research, 2006, 111(B9): B09312. DOI: 10.1029/2005JB003974.
[41] TANG Y J, ZHANG H F, SANTOSH M, et al. Differential destruction of the North China Craton: A tectonic perspective[J/OL]. Journal of Asian Earth Sciences, 2013, 78: 71-82. DOI: 10.1016/j.jseaes.2012.11.047.
[42] ZHU R, CHEN L, WU F, et al. Timing, scale and mechanism of the destruction of the North China Craton[J/OL]. Science China Earth Sciences, 2011, 54(6): 789-797. DOI: 10.1007/s11430-011-4203-4.
[43] ZHAI M, ZHU R, LIU J, et al. Time range of Mesozoic tectonic regime inversion in eastern North China Block[J/OL]. Science in China Series D: Earth Sciences, 2004, 47(2): 151-159. DOI: 10.1360/02yd0416.
[44] LI S Z, KUSKY T M, ZHAO G, et al. Mesozoic tectonics in the Eastern Block of the North China Craton: Implications for subduction of the Pacific plate beneath the Eurasian plate[M/OL]//ZHAI M G, WINDLEY B F, KUSKY T M, et al. Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia: volume 280. Geological Society, London, Special Publications, 2007: 171-188. DOI: 10.1144/SP280.8.
[45] WANG H, LIANG J. Tectonic Evolution of Late Mesozoic–Cenozoic Basins in Eastern China and Implications for Pacific Plate Subduction[J/OL]. Russian Geology and Geophysics, 2019, 60(4): 472-491. DOI: 10.15372/RGG2019071.
[46] ZHU R, XU Y, ZHU G, et al. Destruction of the North China Craton[J/OL]. Science China Earth Sciences, 2012, 55(10): 1565-1587. DOI: 10.1007/s11430-012-4516-y.
[47] WANG T, GUO L, ZHENG Y, et al. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U–Pb ages from metamorphic core complexes[J/OL]. Lithos, 2012, 154: 315-345. DOI: 10.1016/j.lithos.2012.07.020.
[48] WU F, LIN J, WILDE S, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J/OL]. Earth and Planetary Science Letters, 2005, 233(1-2): 103-119. DOI: 10.1016/j.epsl.2005.02.019.
[49] ZHANG H F, ZHU R X, SANTOSH M, et al. Episodic widespread magma underplating beneath the North China Craton in the Phanerozoic: Implications for craton destruction[J/OL]. Gondwana Research, 2013, 23(1): 95-107. DOI: 10.1016/j.gr.2011.12.006.
[50] ZHANG Y Q, MERCIER J L, VERGÉLY P. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia[J/OL]. Tectonophysics, 1998, 285(1-2): 41-75. DOI: 10.1016/S0040-1951(97)00170-4.
[51] YE H, ZHANG B, MAO F. The Cenozoic tectonic evolution of the Great North China: Two types of rifting and crustal necking in the Great North China and their tectonic implications[J/OL]. Tectonophysics, 1987, 133(3-4): 217-227. DOI: 10.1016/0040-1951(87)90265-4.
[52] REN J, TAMAKI K, LI S, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J/OL]. Tectonophysics, 2002, 344(3-4): 175-205. DOI: 10.1016/S0040-1951(01)00271-2.
[53] ZHANG Y, MA Y, YANG N, et al. Cenozoic extensional stress evolution in North China[J/OL]. Journal of Geodynamics, 2003, 36(5): 591-613. DOI: 10.1016/j.jog.2003.08.001.
[54] XU Y G, CHUNG S L, MA J, et al. Contrasting Cenozoic Lithospheric Evolution and Architecture in the Western and Eastern Sino-Korean Craton: Constraints from Geochemistry of Basalts and Mantle Xenoliths[J/OL]. The Journal of Geology, 2004, 112(5): 593-605. DOI: 10.1086/422668.
[55] CHEN L. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J/OL]. Lithos, 2010, 120(1-2): 96-115. DOI: 10.1016/j.lithos.2009.12.007.
[56] TANG Y, CHEN Y J, ZHOU S, et al. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2333-2346. DOI: 10.1002/jgrb.50191.
[57] XU Y G. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling–Taihangshan gravity lineament[J/OL]. Lithos, 2007, 96(1-2): 281-298. DOI: 10.1016/j.lithos.2006.09.013.
[58] HU S, HE L, WANG J. Heat flow in the continental area of China: A new data set[J/OL]. Earth and Planetary Science Letters, 2000, 179(2): 407-419. DOI: 10.1016/S0012-821X(00)00126-6.
[59] HUANG J, ZHAO D. High-resolution mantle tomography of China and surrounding regions[J/OL]. Journal of Geophysical Research, 2006, 111(B9): B09305. DOI: 10.1029/2005JB004066.
[60] XU X, MA X. Geodynamics of the Shanxi Rift system, China[J/OL]. Tectonophysics, 1992, 208(1-3): 325-340. DOI: 10.1016/0040-1951(92)90353-8.
[61] SHI W, CEN M, CHEN L, et al. Evolution of the late Cenozoic tectonic stress regime in the Shanxi Rift, central North China Plate inferred from new fault kinematic analysis[J/OL]. Journal of Asian Earth Sciences, 2015, 114: 54-72. DOI: 10.1016/j.jseaes.2015.04.044.
[62] XU X, MA X, DENG Q. Neotectonic activity along the Shanxi rift system, China[J/OL]. Tectonophysics, 1993, 219(4): 305-325. DOI: 10.1016/0040-1951(93)90180-R.
[63] XU Y G, MA J L, FREY F A, et al. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton[J/OL]. Chemical Geology, 2005, 224(4): 247-271. DOI: 10.1016/j.chemgeo.2005.08.004.
[64] ZHENG J, GRIFFIN W, O’REILLY S, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J/OL]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5203-5225. DOI: 10.1016/j.gca.2007.07.028.
[65] DENG J, MO X, ZHAO H, et al. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots–plume tectonics’[J/OL]. Earth-Science Reviews, 2004, 65(3-4): 223-275. DOI: 10.1016/j.earscirev.2003.08.001.
[66] WILDE S A, ZHOU X, NEMCHIN A A, et al. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia[J/OL]. Geology, 2003, 31(9): 817-820. DOI: 10.1130/G19489.1.
[67] ZHANG H F. Temporal and spatial distribution of Mesozoic mafic magmatism in the North China Craton and implications for secular lithospheric evolution[M/OL]//ZHAI M G, WINDLEY B F, KUSKY T M, et al. Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia: volume 280. Geological Society of London, 2007: 35-54. DOI: 10.1144/SP280.2.
[68] NORTHRUP C J, ROYDEN L H, BURCHFIEL B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J/OL]. Geology, 1995, 23(8): 719-722. DOI: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2.
[69] MOLNAR P, TAPPONNIER P. Relation of the tectonics of eastern China to the India-Eurasia collision: Application of slip-line field theory to large-scale continental tectonics[J/OL]. Geology, 1977, 5(4): 212-216. DOI: 10.1130/0091-7613(1977)5<212:ROTTOE>2.0.CO;2.
[70] LEI J. Upper-mantle tomography and dynamics beneath the North China Craton[J/OL]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6): B06313. DOI: 10.1029/2012JB009212.
[71] ZHAO L, ALLEN R M, ZHENG T, et al. Reactivation of an Archean craton: Constraints from P- and S-wave tomography in North China[J/OL]. Geophysical Research Letters, 2009, 36(17): L17306. DOI: 10.1029/2009GL039781.
[72] LI S, GUO Z, CHEN Y J, et al. Lithospheric Structure of the Northern Ordos From Ambient Noise and Teleseismic Surface Wave Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6940-6957. DOI: 10.1029/2017JB015256.
[73] RITZWOLLER M H, LEVSHIN A L. Eurasian surface wave tomography: Group velocities[J/OL]. Journal of Geophysical Research: Solid Earth, 1998, 103(B3): 4839-4878. DOI: 10.1029/97JB02622.
[74] PRINDLE K, TANIMOTO T. Teleseismic surface wave study for S -wave velocity structure under an array: Southern California[J/OL]. Geophysical Journal International, 2006, 166(2): 601-621. DOI: 10.1111/j.1365-246X.2006.02947.x.
[75] WANG J, WU G, CHEN X. Frequency-Bessel Transform Method for Effective Imaging of Higher-Mode Rayleigh Dispersion Curves From Ambient Seismic Noise Data[J/OL]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723. DOI: 10.1029/2018JB016595.
[76] DZIEWONSKI A, BLOCH S, LANDISMAN M. A Technique for the Analysis of Transient Seismic Signals[J/OL]. Bulletin of the Seismological Society of America, 1969, 59(1): 427-444. DOI: 10.1785/BSSA0590010427.
[77] LEVSHIN A, RATNIKOVA L, BERGER J. Peculiarities of surface-wave propagation across central Eurasia[J/OL]. Bulletin of the Seismological Society of America, 1992, 82(6): 2464-2493. DOI: 10.1785/BSSA0820062464.
[78] RITZWOLLER M H, SHAPIRO N M, BARMIN M P, et al. Global surface wave diffraction tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): ESE 4-1-ESE 4-13. DOI: 10.1029/2002JB001777.
[79] FANG H, YAO H, ZHANG H, et al. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application[J/OL]. Geophysical Journal International, 2015, 201(3): 1251-1263. DOI: 10.1093/gji/ggv080.
[80] ZHOU Y, NOLET G, DAHLEN F A, et al. Global upper-mantle structure from finite-frequency surface-wave tomography[J/OL]. Journal of Geophysical Research, 2006, 111(B4): B04304. DOI: 10.1029/2005JB003677.
[81] LIN F C, RITZWOLLER M H, SNIEDER R. Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array[J/OL]. Geophysical Journal International, 2009, 177(3): 1091-1110. DOI: 10.1111/j.1365-246X.2009.04105.x.
[82] LIN F C, RITZWOLLER M H. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J/OL]. Geophysical Journal International, 2011, 186(3): 1104-1120. DOI: 10.1111/j.1365-246X.2011.05070.x.
[83] WANG K, LU L, MAUPIN V, et al. Surface Wave Tomography of Northeastern Tibetan Plateau Using Beamforming of Seismic Noise at a Dense Array[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB018416. DOI: 10.1029/2019JB018416.
[84] LI Z, CHEN X. An Effective Method to Extract Overtones of Surface Wave From Array Seismic Records of Earthquake Events[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511. DOI: 10.1029/2019JB018511.
[85] AKI K. Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[86] AKI K. A note on the use of microseisms in determining the shallow structure of the Earth’s crust[J/OL]. Geophysics, 1965, 30(4): 665-666. DOI: 10.1190/1.1439640.
[87] PARK C B, MILLER R D, XIA J. Imaging dispersion curves of surface waves on multi-channel record[C/OL]//SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, 1998: 1377-1380. DOI: 10.1190/1.1820161.
[88] MCMECHAN G A, YEDLIN M J. Analysis of dispersive waves by wave field transformation[J/OL]. Geophysics, 1981, 46(6): 869-874. DOI: 10.1190/1.1441225.
[89] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J/OL]. Proceedings of the IEEE, 1969, 57(8): 1408-1418. DOI: 10.1109/PROC.1969.7278.
[90] LACOSS R T, KELLY E J, TOKSÖZ M N. Estimation of Seismic Noise Structure Using Arrays[J/OL]. Geophysics, 1969, 34(1): 21-38. DOI: 10.1190/1.1439995.
[91] LUO Y, XIA J, MILLER R D, et al. Rayleigh-Wave Dispersive Energy Imaging Using a High-Resolution Linear Radon Transform[J/OL]. Pure and Applied Geophysics, 2008, 165(5): 903-922. DOI: 10.1007/s00024-008-0338-4.
[92] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J/OL]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. DOI: 10.1109/TIT.2005.862083.
[93] CANDES E J, WAKIN M B. An Introduction To Compressive Sampling[J/OL]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. DOI: 10.1109/MSP.2007.914731.
[94] DONOHO D L. Compressed sensing[J/OL]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582.
[95] DREMEAU A, LE COURTOIS F, BONNEL J. Reconstruction of Dispersion Curves in the Frequency-Wavenumber Domain Using Compressed Sensing on a Random Array[J/OL]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 914-922. DOI: 10.1109/JOE.2016.2644780.
[96] LE COURTOIS F, BONNEL J. Compressed sensing for wideband wavenumber tracking in dispersive shallow water[J/OL]. The Journal of the Acoustical Society of America, 2015, 138(2): 575-583. DOI: 10.1121/1.4926381.
[97] CHEN Z, JIANG B, SONG J, et al. Accurate Sparse Recovery of Rayleigh Wave Characteristics Using Fast Analysis of Wave Speed (FAWS) Algorithm for Soft Soil Layers[J/OL]. Applied Sciences, 2018, 8(7): 1204. DOI: 10.3390/app8071204.
[98] HARLEY J B, MOURA J M F. Sparse recovery of the multimodal and dispersive characteristics of Lamb waves[J/OL]. The Journal of the Acoustical Society of America, 2013, 133(5): 2732-2745. DOI: 10.1121/1.4799805.
[99] HARLEY J B. Predictive Guided Wave Models Through Sparse Modal Representations[J/OL]. Proceedings of the IEEE, 2016, 104(8): 1604-1619. DOI: 10.1109/JPROC.2015.2481438.
[100] CHENG C, CHEN L, YAO H, et al. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications[J/OL]. Gondwana Research, 2013, 23(1): 25-38. DOI: 10.1016/j.gr.2012.02.014.
[101] TIAN Y, ZHAO D. Destruction mechanism of the North China Craton: Insight from P and S wave mantle tomography[J/OL]. Journal of Asian Earth Sciences, 2011, 42(6): 1132-1145. DOI: 10.1016/j.jseaes.2011.06.010.
[102] HE L, GUO Z, CHEN Y J, et al. Seismic Imaging of a Magma Chamber and Melt Recharge of the Dormant Datong Volcanoes[J/OL]. Earth and Space Science, 2021, 8(12): e2021EA001931. DOI: 10.1029/2021EA001931.
[103] XU X, DING Z, GUO H, et al. Seismic Tomography of the Trans-North China Orogen and Its Dynamic Implications[J/OL]. Frontiers in Earth Science, 2022, 10: 948040. DOI: 10.3389/feart.2022.948040.
[104] CHEN L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration[J/OL]. Physics of the Earth and Planetary Interiors, 2009, 173(3-4): 216-227. DOI: 10.1016/j.pepi.2008.11.011.
[105] ZHENG T, ZHAO L, ZHU R. New evidence from seismic imaging for subduction during assembly of the North China craton[J/OL]. Geology, 2009, 37(5): 395-398. DOI: 10.1130/G25600A.1.
[106] JIA S, WANG F, TIAN X, et al. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile[J/OL]. Tectonophysics, 2014, 627: 48-56. DOI: 10.1016/j.tecto.2014.04.013.
[107] HUANG Z, WANG L, ZHAO D, et al. Seismic anisotropy and mantle dynamics beneath China[J/OL]. Earth and Planetary Science Letters, 2011, 306(1-2): 105-117. DOI: 10.1016/j.epsl.2011.03.038.
[108] ZHAO L, ZHENG T, LU G, et al. No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision: Constraints from new SKS wave splitting measurements[J/OL]. Geophysical Journal International, 2011, 187(2): 1027-1037. DOI: 10.1111/j.1365-246X.2011.05201.x.
[109] AI S, ZHENG Y, RIAZ M S, et al. Seismic Evidence on Different Rifting Mechanisms in Southern and Northern Segments of the Fenhe-Weihe Rift Zone[J/OL]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 609-630. DOI: 10.1029/2018JB016476.
[110] CAI Y, WU J, RIETBROCK A, et al. S wave Velocity Structure of the Crust and Upper Mantle Beneath Shanxi Rift, Central North China Craton and its Tectonic Implications[J/OL]. Tectonics, 2021, 40(4): e2020TC006239. DOI: 10.1029/2020TC006239.
[111] BAO X, SONG X, XU M, et al. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J/OL]. Earth and Planetary Science Letters, 2013, 369–370: 129-137. DOI: 10.1016/j.epsl.2013.03.015.
[112] JIANG M, AI Y, CHEN L, et al. Local modification of the lithosphere beneath the central and western North China Craton: 3-D constraints from Rayleigh wave tomography[J/OL]. Gondwana Research, 2013, 24(3-4): 849-864. DOI: 10.1016/j.gr.2012.06.018.
[113] CHEN L, JIANG M, YANG J, et al. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton[J/OL]. Geology, 2014, 42(3): 223-226. DOI: 10.1130/G35010.1.
[114] ZHANG Y, CHEN L, AI Y, et al. Lithospheric structure beneath the central and western North China Craton and adjacent regions from S-receiver function imaging[J/OL]. Geophysical Journal International, 2019, 219(1): 619-632. DOI: 10.1093/gji/ggz322.
[115] DONG X, YANG D, NIU F, et al. Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton[J/OL]. Scientific Reports, 2021, 11(1): 12523. DOI: 10.1038/s41598-021-92048-8.
[116] ZHANG H, HUANG Q, ZHAO G, et al. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes[J/OL]. Earth and Planetary Science Letters, 2016, 453: 182-192. DOI: 10.1016/j.epsl.2016.08.025.
[117] CHEN L, AI Y. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration[J/OL]. Journal of Geophysical Research, 2009, 114(B6): B06307. DOI: 10.1029/2008JB006221.
[118] ZHENG T, ZHAO L, CHEN L. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin[J/OL]. Physics of the Earth and Planetary Interiors, 2005, 152(3): 129-143. DOI: 10.1016/j.pepi.2005.06.011.
[119] Sanchez-Sesma F J, CAMPILLO M. Retrieval of the Green’s Function from Cross Correlation: The Canonical Elastic Problem[J/OL]. Bulletin of the Seismological Society of America, 2006, 96(3): 1182-1191. DOI: 10.1785/0120050181.
[120] CHEN X. Seismogram Synthesis in Multi-layered Half-space Part I. Theoretical Formulations[J]. Earthquake Research in China, 1999, 13(2): 149-174.
[121] FU L, PAN L, LI Z, et al. Improved High-Resolution 3D Vs Model of Long Beach, CA: Inversion of Multimodal Dispersion Curves From Ambient Noise of a Dense Array[J/OL]. Geophysical Research Letters, 2022, 49(4): e2021GL097619. DOI: 10.1029/2021GL097619.
[122] WU G X, PAN L, WANG J N, et al. Shear Velocity Inversion Using Multimodal Dispersion Curves From Ambient Seismic Noise Data of USArray Transportable Array[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018213. DOI: 10.1029/2019JB018213.
[123] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J/OL]. Journal of Asian Earth Sciences, 2020, 196: 104372. DOI: 10.1016/j.jseaes.2020.104372.
[124] MA Q, PAN L, WANG J N, et al. Crustal S-Wave Velocity Structure Beneath the Northwestern Bohemian Massif, Central Europe, Revealed by the Inversion of Multimodal Ambient Noise Dispersion Curves[J/OL]. Frontiers in Earth Science, 2022, 10: 838751. DOI: 10.3389/feart.2022.838751.
[125] YANG Z, CHEN X, PAN L, et al. Multi-channel analysis of Rayleigh waves based on the Vector Wavenumber Tansformation Method (VWTM)[J/OL]. Chinese Journal of Geophysics (in Chinese), 2019, 62(1): 298-305. DOI: 10.6038/cjg2019M0641.
[126] LI Z, SHI C, CHEN X. Constraints on Crustal P Wave Structure With Leaking Mode Dispersion Curves[J/OL]. Geophysical Research Letters, 2021, 48(20): e2020GL091782. DOI: 10.1029/2020GL091782.
[127] LI Z, SHI C, REN H, et al. Multiple Leaking Mode Dispersion Observations and Applications From Ambient Noise Cross-Correlation in Oklahoma[J/OL]. Geophysical Research Letters, 2022, 49(1): e2021GL096032. DOI: 10.1029/2021GL096032.
[128] ZHOU J, CHEN X. Removal of Crossed Artifacts from Multimodal Dispersion Curves with Modified Frequency–Bessel Method[J/OL]. Bulletin of the Seismological Society of America, 2022, 112(1): 143-152. DOI: 10.1785/0120210012.
[129] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J/OL]. Geophysical Journal International, 2019, 216(2): 1276-1303. DOI: 10.1093/gji/ggy479.
[130] CHEN X. A systematic and efficient method of computing normal modes for multilayered half-space[J/OL]. Geophysical Journal International, 1993, 115(2): 391-409. DOI: 10.1111/j.1365-246X.1993.tb01194.x.
[131] HANSEN P C. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve[J/OL]. SIAM Review, 1992, 34(4): 561-580. DOI: 10.1137/1034115.
[132] HISADA Y. An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths[J/OL]. Bulletin of the Seismological Society of America, 1994, 84(5): 1456-1472. DOI: 10.1785/BSSA0840051456.
[133] LUCO J E, APSEL R J. On the Green’s functions for a layered half-space. Part I[J/OL]. Bulletin of the Seismological Society of America, 1983, 73(4): 909-929. DOI: 10.1785/BSSA0730040909.
[134] SNIEDER R, WAPENAAR K, WEGLER U. Unified Green’s function retrieval by cross-correlation; connection with energy principles[J/OL]. Physical Review E, 2007, 75(3): 036103. DOI: 10.1103/PhysRevE.75.036103.
[135] CANDES E, TAO T. Decoding by Linear Programming[J/OL]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. DOI: 10.1109/TIT.2005.858979.
[136] BARANIUK R G. Compressive Sensing [Lecture Notes][J/OL]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. DOI: 10.1109/MSP.2007.4286571.
[137] BARANIUK R, DAVENPORT M, DEVORE R, et al. A Simple Proof of the Restricted Isometry Property for Random Matrices[J/OL]. Constructive Approximation, 2008, 28(3): 253-263. DOI: 10.1007/s00365-007-9003-x.
[138] TROPP J A, GILBERT A C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit[J/OL]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. DOI: 10.1109/TIT.2007.909108.
[139] DONOHO D L, TSAIG Y, DRORI I, et al. Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit[J/OL]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. DOI: 10.1109/TIT.2011.2173241.
[140] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic Decomposition by Basis Pursuit[J/OL]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61. DOI: 10.1137/S1064827596304010.
[141] DONOHO D, ELAD M, TEMLYAKOV V. Stable recovery of sparse overcomplete representations in the presence of noise[J/OL]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18. DOI: 10.1109/TIT.2005.860430.
[142] JI S, XUE Y, CARIN L. Bayesian Compressive Sensing[J/OL]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356. DOI: 10.1109/TSP.2007.914345.
[143] WIPF D, RAO B. Sparse Bayesian Learning for Basis Selection[J/OL]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164. DOI: 10.1109/TSP.2004.831016.
[144] ZHANG Z, RAO B D. Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning[J/OL]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. DOI: 10.1109/JSTSP.2011.2159773.
[145] GRANT M, BOYD S. CVX: Matlab software for disciplined convex programming, version 2.1[EB/OL]. 2014. http://cvxr.com/cvx.
[146] HU S, LUO S, YAO H. The Frequency-Bessel Spectrograms of Multicomponent Cross-Correlation Functions From Seismic Ambient Noise[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2020JB019630. DOI: 10.1029/2020JB019630.
[147] IKEDA T, MATSUOKA T, TSUJI T, et al. Multimode inversion with amplitude response of surface waves in the spatial autocorrelation method[J/OL]. Geophysical Journal International, 2012, 190(1): 541-552. DOI: 10.1111/j.1365-246X.2012.05496.x.
[148] ZHANG H M, CHEN X F, CHANG S. An Efficient Numerical Method for Computing Synthetic Seismograms for a Layered Half-space with Sources and Receivers at Close or Same Depths[J/OL]. Pure and Applied Geophysics, 2003, 160: 467-486. DOI: 10.1007/PL00012546.
[149] BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J/OL]. Geophysical Journal International, 2007, 169(3): 1239-1260. DOI: 10.1111/j.1365-246X.2007.03374.x.
[150] SHEN W, RITZWOLLER M H, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J/OL]. Geophysical Journal International, 2016, 206(2): 954-979. DOI: 10.1093/gji/ggw175.
[151] BROCHER T M. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust[J/OL]. Bulletin of the Seismological Society of America, 2005, 95(6): 2081-2092. DOI: 10.1785/0120050077.
[152] CHINARRAY. China seismic array waveform data[M/OL]. Institute of Geophysics, China Earthquake Administration, 2006. DOI: 10.7914/SN/6B_2006.
[153] CHINARRAY-HIMALAYA. China seismic array waveform data of himalaya project[M/OL]. Institute of Geophysics, China Earthquake Administration, Beijing, 2011. DOI: 10.12001/ChinArray.Data.
[154] STUMP B. A comparative study of natural and man-induced seismicity in the yanquing-huailai basin and the haicheng area [data set][M/OL]. International Federation of Digital Seismograph Networks, 2002. https://www.fdsn.org/networks/detail/XG_2002/. DOI: 10.7914/SN/XG_2002.
[155] GRAND S, NI J. Collaborative research: Northeast china extended seismic array: Deep subduction, mantle dynamics and lithospheric evolution beneath northeast china [data set][M/OL]. International Federation of Digital Seismograph Networks, 2009. https://www.fdsn.org/networks/detail/YP_2009/. DOI: 10.7914/SN/YP_2009.
[156] XIU-FEN Z, BIAO O, DONG-NING Z, et al. Technical system construction of data backup centre for china seismograph network and the data support to researches on the wenchuan earthquake[J/OL]. Chinese Journal of Geophysics (in Chinese), 2009, 52(5): 1412-1417. http://www.geophy.cn//article/id/cjg_1034. DOI: 10.3969/j.issn.0001-5733.2009.05.031.
[157] ZHENG T, DUAN Y, XU W, et al. A seismic model for crustal structure in North China Craton[J/OL]. Earth and Planetary Physics, 2017, 1(1): 26-34. DOI: 10.26464/epp2017004.
[158] FANG L, WU J, DING Z, et al. High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise[J/OL]. Geophysical Journal International, 2010, 181(2): 1171-1182. DOI: 10.1111/j.1365-246X.2010.04571.x.
[159] HUANG X, DING Z, NING J, et al. Sedimentary and crustal velocity structure of Trans-North China Orogen from joint inversion of Rayleigh wave phase velocity and ellipticity and some implication for Syn-rift volcanism[J/OL]. Tectonophysics, 2021, 819: 229104. DOI: 10.1016/j.tecto.2021.229104.
[160] AI S, ZHENG Y, HE L, et al. Joint inversion of ambient noise and earthquake data in the Trans-North China Orogen: On-going lithospheric modification and its impact on the Cenozoic continental rifting[J/OL]. Tectonophysics, 2019, 763: 73-85. DOI: 10.1016/j.tecto.2019.05.003.
[161] FORBRIGER T. Inversion of shallow-seismic wavefields: I. Wavefield transformation[J/OL]. Geophysical Journal International, 2003, 153(3): 719-734. DOI: 10.1046/j.1365-246X.2003.01929.x.
[162] YAO H, van der Hilst R D, MONTAGNER J P. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J/OL]. Journal of Geophysical Research, 2010, 115(B12): B12307. DOI: 10.1029/2009JB007142.
[163] 李正波. 频率贝塞尔变换法提取地震记录中的频散信息 [D]. 合肥,中国: 中国科学技术大学, 2020.
[164] XU Z. Seismic study of the crust and upper mantle structure in eastern Asia using ambient noise correlation and earthquake data[D]. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2011.
[165] JIA S X, ZHANG X K. Crustal Structure and Comparison of Different Tectonic Blocks in North China[J/OL]. Chinese Journal of Geophysics, 2005, 48(3): 672-683. DOI: 10.1002/cjg2.700.
[166] LIU J H, LIU F T, YAN X W, et al. A Study of Lg Coda Attenuation beneath North China: Seismic Imaging of Lg Coda Q 0[J/OL]. Chinese Journal of Geophysics, 2004, 47(6): 1175-1185. DOI: 10.1002/cjg2.603.
[167] ZHAO L, ALLEN R M, ZHENG T, et al. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas[J/OL]. Geochemistry, Geophysics, Geosystems, 2012, 13(6): Q06007. DOI: 10.1029/2012GC004119.
[168] WEI W, YE G, JIN S, et al. Geoelectric Structure of Lithosphere Beneath Eastern North China: Features of Thinned Lithosphere from Magnetotelluric Soundings[J/OL]. Earth Science Frontiers, 2008, 15(4): 204-216. DOI: 10.1016/S1872-5791(08)60055-X.
[169] SHEN Z K, ZHAO C, YIN A, et al. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements[J/OL]. Journal of Geophysical Research: Solid Earth, 2000, 105(B3): 5721-5734. DOI: 10.1029/1999JB900391.
[170] ZHENG T Y, ZHAO L, ZHU R X. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary[J/OL]. Geophysical Research Letters, 2008, 35(8): L08303. DOI: 10.1029/2008GL033439.
[171] FAN Q, ZHANG H, SUI J, et al. Magma underplating and Hannuoba present crust-mantle transitional zone composition: Xenolith petrological and geochemical evidence[J/OL]. Science in China Series D: Earth Sciences, 2005, 48(8): 1089-1105. DOI: 10.1360/04yd0007.
[172] ZHENG J, GRIFFIN W, QI L, et al. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton[J/OL]. Chemical Geology, 2009, 264(1-4): 266-280. DOI: 10.1016/j.chemgeo.2009.03.011.
修改评论