中文版 | English
题名

高阶面波频散曲线的提取及华北克拉通地区三维S波速度构建

其他题名
Extraction of higher-mode surface wave dispersion curves and construction of three-dimensional S-wave velocity in the North China Craton
姓名
姓名拼音
GAO Lina
学号
11749315
学位类型
博士
学位专业
080102 固体力学
学科门类/专业学位类别
08 工学
导师
张振国
导师单位
地球与空间科学系
论文答辩日期
2022-10-27
论文提交日期
2023-04-26
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

目前面波成像主要使用的是基阶频散曲线,反演会存在非唯一性和不稳定等问题。在反演中加入高阶频散曲线可以提高反演模型的分辨率和增加反演的稳定性。然而在面波成像尤其是大尺度的面波成像中多阶频散曲线的提取是一个难点。目前很多从台阵数据提取多阶频散曲线的方法暗含了平面波假设。而最近提出的频率-贝塞尔变换法(F-J 法)没有平面波假设,适用于小区域频散曲线的提取。但使用 F-J 法提取频散曲线时,运行时间长,频散谱中频散曲线的分辨率较低。为此本文基于压缩感知对 F-J 法进行了改进。使用了两种方法来求解此压缩感知反演问题,一种方法是基于 𝑙1 范数的优化算法,另一种方法是贝叶斯方法。合成和实际数据测试用来验证此压缩感知方法的有效性。该压缩感知方法提取的频散曲线和 F-J 法提取的相一致。但与 F-J 法相比,该压缩感知方法具有运行时间短,频散能量图分辨率高和信噪比高的优点。该压缩感知方法能够快速提取高分辨率的多阶频散曲线,为地下速度结构反演提供了基础。

华北克拉通因其东部岩石圈遭到强烈破坏而吸引了大量的研究。目前对华北克拉通岩石圈的破坏范围,尤其是地壳的变形和破坏程度,破坏机制和大同火山的起源等还不是很清楚。精细的三维地壳和上地幔速度结构可以为理解这些问题提供约束。但以前的面波成像只使用了周期较长的基阶频散曲线,因此缺乏对地壳结构的约束。为了从背景噪音中提取多阶频散曲线,本文将 F-J 法应用到华北克拉通地区密集台站记录的背景噪音数据中。将整个研究地区划分成很多子区域,利用 F-J 法分别从每个子区域台阵记录的背景噪音中提取多阶频散曲线,构建了华北克拉通地区基阶和第一到第五高阶的相速度图。基阶相速度图在短周期与地表地质构造相吻合,基阶长周期和高阶相速度图显示在大同火山附近有大尺度的低速异常,可能为软流圈物质上涌引起。高阶频散曲线可以提供对地壳速度结构的约束,为后面精细三维地壳和上地幔速度模型的构建提供了基础。

为得到华北克拉通地区的速度结构,分别对每个子区域的频散曲线进行反演得到该子区域的一维 S 波速度结构,然后将所有子区域的一维 S 波速度结构进行插值,得到了华北克拉通地区精细的三维地壳及上地幔 S 波速度结构。在反演中,对于大多数子区域使用了频率更高的基阶频散曲线和高阶频散曲线,提高了地壳速度结构垂向分辨率。本文的三维 S 波速度模型显示,东部块体的地壳比较薄(∼30 km),中西部块体的地壳厚(∼40 km),中部造山带中北部的地壳厚度比中南部的大。在上地壳,陕西山西裂缝为线状的相对的低速异常,对应厚的沉积层。在上地幔,在该裂缝的北部为低速异常,其岩石圈可能发生了减薄,中南部存在一个明显的高速异常,可能为残留的太古代克拉通。该速度模型显示在中下地壳和上地幔,中西部块体的北部为大范围的低速区,且大同火山附近的低速异常幅值更低,推测可能是地幔深处的热物质上涌引起。该速度模型还显示在中部块体和西部块体的北部有广泛的中地壳低速层,这可能是由岩浆底侵作用造成的地壳物质部分熔融引起。本文构建的精细三维地壳和上地幔速度结构为研究华北克拉通的破坏范围,华北克拉通的地壳变形和大同火山的起源等问题提供了参考。

其他摘要

Current surface wave tomography mainly used dispersion curves of fundamental mode surface waves, and thus the inversion of dispersion curves suffered from nonuniqueness and instability. The addition of higher modes to the inversion can improve the resolution of inverted models and strengthen the stability of the inversion. However, the extraction of multimodal dispersion curves from seismic data is a challenge in surface wave tomography, especially in large-scale surface wave tomography. For most methods of extracting multimodal dispersion curves from array data, the assumption of plane wave propagation is implied. The recently proposed frequency-Bessel transform (F-J) method doesn’t make the assumption of plane wave propagation, so it is more suitable for the extraction of dispersion curves from array data in a small region. However, the F-J method takes long running time and the spectrograms obtained by the F-J method have a low resolution. In this study, the F-J method is improved based on compressed sensing (CS). The CS inverse problem is solved by using two methods: an 𝑙1-based optimization algorithm and a Bayesian method. Synthetic and field data tests are conducted to validate the CS method. The dispersion curves extracted by the CS methods are consistent with those extracted by the F-J method, but the CS methods are more efficient and the spectrograms extracted by the CS methods can have a higher resolution and higher signal-to-noise ratio than those by the F-J method. The CS methods can quickly extract high-resolution multimodes from ambient noise, thereby providing a basis for the inversion for the subsurface velocity structure.

The North China Craton (NCC) has attracted a large number of geophysical studies because of its strong cratonic lithosphere destruction in the eastern block. Now there are still a number of issues that are not very clear in the NCC, such as the spatial distribution of the cratonic destruction, especially crustal deformation and the extent of crustal destruction, the destruction mechanism and the origin of the Datong volcanoes. A fine three-dimentional (3-D) velocity model of the crust and uppermost mantle in the NCC can provide constraints on understanding these questions. However, only fundamental-mode dispersion curves of long periods are used in previous surface wave tomography studies beneath the NCC, and the detailed constraints on the crustal structure of the NCC are lacked. To extract multimodal dispersion curves from ambient noise, the F-J method is applied to the ambient noise data recorded by the dense stations in the NCC. The entire study region is divided into many sub-regions, the F-J method is used to extract multimodal dispersion curves from the ambient noise recorded by each sub-regional stations and phase velocity maps of the fundamental and first to fifth higher modes are constructed in the NCC. The phase velocity maps of the fundamental mode at the short periods are consistent with the surface geological structures. The fundamental-mode phase velocity maps at the long periods and the phase velocity maps of the higher modes show a large-scale low-velocity anomaly near the Datong volcanoes, which may be caused by the upwelling of asthenospheric material. The dispersion curves of higher-mode surface waves can provide additional constraints on the crustal structure, which can provide a basis for imaging a high-resolution 3-D S-wave velocity model of the crust and uppermost mantle in the NCC.

To obtain a more reliable velocity model in the NCC, the dispersion curves are inverted to obtain a one-dimensional (1-D) S-wave velocity structure for each sub-region, and then the 1-D S-wave velocity models of all sub-regions are integrated to obtain a fine 3-D S-wave velocity structure of the crust and uppermost mantle in the NCC. A high-frequency fundamental mode and higher modes are used in the inversion for most sub-regions, so the vertical resolution of the crustal velocity structure is improved. The 3-D S-wave velocity structure shows that the eastern block has a thin crust (∼30 km), the Trans-North China Orogen (TNCO) and western bock have a thick crust (∼40 km) and the central-northern part of the TNCO has a thicker crust than that of the central-southern part. In the upper crust, the Shaanxi-Shanxi rift shows a linearly relative low-velocity anomaly, which corresponds to thick sediments. In the upper mantle, the north of the rift is characterized by low velocities, indicating its lithosphere may be thinned and the central-southern part of the rift is imaged as an apparent high-velocity patch, a possible remnant of a Archean craton. The model shows that in the middle-lower crust and upper mantle, a large-scale low-velocity area is observed at the northern part of the TNCO and western block, and the low-velocity anomaly near the Datong volcanoes has a lower amplitude, which may be caused by the upwelling of hot materials in the deep upper mantle. The results also show extensive low-velocity layers exist in the middle crust beneath the north of the TNCO and western block, which may be caused by partial melting of the middle crust associated with magmatic underplating. The detailed 3-D crustal and upper-mantle velocity model of the NCC constructed in this study can provide a reference for studying the spatial extent of the cratonic destruction, crustal deformation of the NCC and the origin of the Datong volcanoes.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2022-12
参考文献列表

[1] HUANG Z, SU W, PENG Y, et al. Rayleigh wave tomography of China and adjacent regions[J/OL]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2): 2073. DOI: 10.1029/2001JB001696.
[2] GOSSELIN J M, AUDET P, SCHAEFFER A J, et al. Azimuthal anisotropy in Bayesian surface wave tomography: Application to northern Cascadia and Haida Gwaii, British Columbia[J/OL]. Geophysical Journal International, 2021, 224(3): 1724-1741. DOI: 10.1093/gji/ggaa561.
[3] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise[J/OL]. Science, 2005, 307(5715): 1615-1618. DOI: 10.1126/science.1108339.
[4] CAMPILLO M, PAUL A. Long-Range Correlations in the Diffuse Seismic Coda[J/OL]. Science, 2003, 299(5606): 547-549. DOI: 10.1126/science.1078551.
[5] ROUX P, SABRA K G, KUPERMAN W A, et al. Ambient noise cross correlation in free space: Theoretical approach[J/OL]. The Journal of the Acoustical Society of America, 2005, 117(1): 79-84. DOI: 10.1121/1.1830673.
[6] SHAPIRO N M, CAMPILLO M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J/OL]. Geophysical Research Letters, 2004, 31(7): L07614. DOI: 10.1029/2004GL019491.
[7] SNIEDER R. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase[J/OL]. Physical Review E, 2004, 69(4): 046610. DOI: 10.1103/PhysRevE.69.046610.
[8] YAO H, van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps[J/OL]. Geophysical Journal International, 2006, 166(2): 732-744. DOI: 10.1111/j.1365-246X.2006.03028.x.
[9] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise Rayleigh wave tomography across Europe[J/OL]. Geophysical Journal International, 2007, 168(1): 259-274. DOI: 10.1111/j.1365-246X.2006.03203.x.
[10] GOUÉDARD P, ROUX P, CAMPILLO M. Small-scale seismic inversion using surface waves extracted from noise cross correlation[J/OL]. The Journal of the Acoustical Society of America, 2008, 123(3): EL26-EL31. DOI: 10.1121/1.2838251.
[11] YAO H, BEGHEIN C, van der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - II. Crustal and upper-mantle structure[J/OL]. Geophysical Journal International, 2008, 173(1): 205-219. DOI: 10.1111/j.1365-246X.2007.03696.x.
[12] SHEN W, RITZWOLLER M H. Crustal and uppermost mantle structure beneath the United States[J/OL]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4306-4342. DOI: 10.1002/2016JB012887.
[13] MOSCHETTI M P, RITZWOLLER M H, LIN F, et al. Seismic evidence for widespread western-US deep-crustal deformation caused by extension[J/OL]. Nature, 2010, 464(7290): 885-889. DOI: 10.1038/nature08951.
[14] BEM T S, LIU C, YAO H, et al. Azimuthally Anisotropic Structure in the Crust and Uppermost Mantle in Central East China and Its Significance to Regional Deformation Around the Tan-Lu Fault Zone[J/OL]. Journal of Geophysical Research: Solid Earth, 2022, 127(3): e2021JB023532. DOI: 10.1029/2021JB023532.
[15] XIA J, MILLER R D, PARK C B. Advantages of calculating shear-wave velocity from surface waves with higher modes[C/OL]//SEG Technical Program Expanded Abstracts 2000. Society of Exploration Geophysicists, 2000: 1295-1298. DOI: 10.1190/1.1815633.
[16] WU F Y, YANG J H, XU Y G, et al. Destruction of the North China Craton in the Mesozoic[J/OL]. Annual Review of Earth and Planetary Sciences, 2019, 47(1): 173-195. DOI: 10.1146/annurev-earth-053018-060342.
[17] LEE C T A, LUFFI P, CHIN E J. Building and Destroying Continental Mantle[J/OL]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 59-90. DOI: 10.1146/annurev-earth-040610-133505.
[18] FOLEY S F. Rejuvenation and erosion of the cratonic lithosphere[J/OL]. Nature Geoscience, 2008, 1(8): 503-510. DOI: 10.1038/ngeo261.
[19] GAO S, RUDNICK R L, YUAN H L, et al. Recycling lower continental crust in the North China craton[J/OL]. Nature, 2004, 432(7019): 892-897. DOI: 10.1038/nature03162.
[20] GRIFFIN W L, ZHANG A, O’REILLY S Y, et al. Phanerozoic Evolution of the Lithosphere Beneath the Sino-Korean Craton[M/OL]//FLOWER M F J, CHUNG S L, LO C H, et al. Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union (AGU), 1998: 107-126. DOI: 10.1029/GD027p0107.
[21] LIU D Y, NUTMAN A P, COMPSTON W, et al. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton[J/OL]. Geology, 1992, 20(4): 339-342. DOI: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2.
[22] ZHAO G, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited[J/OL]. Precambrian Research, 2005, 136(2): 177-202. DOI: 10.1016/j.precamres.2004.10.002.
[23] ZHAO G, WILDE S A, CAWOOD P A, et al. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P–T path constraints and tectonic evolution[J/OL]. Precambrian Research, 2001, 107(1-2): 45-73. DOI: 10.1016/S0301-9268(00)00154-6.
[24] ZHAO G. Palaeoproterozoic assembly of the North China Craton[J/OL]. Geological Magazine, 2001, 138(1): 87-91. DOI: 10.1017/S0016756801005040.
[25] SANTOSH M, ZHAO D, KUSKY T. Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography[J/OL]. Journal of Geodynamics, 2010, 49(1): 39-53. DOI: 10.1016/j.jog.2009.09.043.
[26] XIAO W, WINDLEY B F, YONG Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J/OL]. Journal of Asian Earth Sciences, 2009, 35(3-4): 323-333. DOI: 10.1016/j.jseaes.2008.10.001.
[27] XIAO W, WINDLEY B F, HAO J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J/OL]. Tectonics, 2003, 22(6): 1069. DOI: 10.1029/2002TC001484.
[28] DAVIS G A, ZHENG Y, WANG C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[M/OL]//HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation. Geological Society of America, 2001: 171-197. DOI: 10.1130/0-8137-1194-0.171.
[29] MENG Q R, ZHANG G W. Geologic framework and tectonic evolution of the Qinling orogen, central China[J/OL]. Tectonophysics, 2000, 323(3-4): 183-196. DOI: 10.1016/S0040-1951(00)00106-2.
[30] TANG J, XU W, WANG F, et al. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia[J/OL]. Science China Earth Sciences, 2018, 61(5): 527-559. DOI: 10.1007/s11430-017-9174-1.
[31] LIU K, ZHANG J, XIAO W, et al. A review of magmatism and deformation history along the NE Asian margin from ca. 95 to 30 Ma: Transition from the Izanagi to Pacific plate subduction in the early Cenozoic[J/OL]. Earth-Science Reviews, 2020, 209: 103317. DOI: 10.1016/j.earscirev.2020.103317.
[32] MARUYAMA S, ISOZAKI Y, KIMURA G, et al. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present[J/OL]. The Island Arc, 1997, 6(1): 121-142. DOI: 10.1111/j.1440-1738.1997.tb00043.x.
[33] SMITH A D. A plate model for Jurassic to Recent intraplate volcanism in the Pacific Ocean basin[M/OL]//FOULGER G R, JURDY D M. Plates, Plumes and Planetary Processes. Geological Society of America, 2007: 471-495. DOI: 10.1130/2007.2430(23).
[34] KUSKY T M, WINDLEY B F, ZHAI M G. Tectonic evolution of the North China Block: From orogen to craton to orogen[M/OL]//ZHAI M G, WINDLEY B F, KUSKY T M, et al. Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geological Society of London, 2007: 1-34. DOI: 10.1144/SP280.1.
[35] MENZIES M A, FAN W, ZHANG M. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China[M/OL]//PRICHARD H M, ALABASTER T, HARRIS N B W, et al. Magmatic Processes and Plate Tectonics: volume 76. Geological Society, London, Special Publications, 1993: 71-81. DOI: 10.1144/GSL.SP.1993.076.01.04.
[36] GAO S, RUDNICK R L, CARLSON R W, et al. Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton[J/OL]. Earth and Planetary Science Letters, 2002, 198(3-4): 307-322. DOI: 10.1016/S0012-821X(02)00489-2.
[37] FAN W M, ZHANG H F, BAKER J, et al. On and Off the North China Craton: Where is the Archaean Keel?[J/OL]. Journal of Petrology, 2000, 41(7): 933-950. DOI: 10.1093/petrology/41.7.933.
[38] XU Y G. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism[J/OL]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(9-10): 747-757. DOI: 10.1016/S1464-1895(01)00124-7.
[39] GUO Z, AFONSO J C, QASHQAI M T, et al. Thermochemical structure of the North China Craton from multi-observable probabilistic inversion: Extent and causes of cratonic lithosphere modification[J/OL]. Gondwana Research, 2016, 37: 252-265. DOI: 10.1016/j.gr.2016.07.002.
[40] CHEN L, ZHENG T, XU W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration[J/OL]. Journal of Geophysical Research, 2006, 111(B9): B09312. DOI: 10.1029/2005JB003974.
[41] TANG Y J, ZHANG H F, SANTOSH M, et al. Differential destruction of the North China Craton: A tectonic perspective[J/OL]. Journal of Asian Earth Sciences, 2013, 78: 71-82. DOI: 10.1016/j.jseaes.2012.11.047.
[42] ZHU R, CHEN L, WU F, et al. Timing, scale and mechanism of the destruction of the North China Craton[J/OL]. Science China Earth Sciences, 2011, 54(6): 789-797. DOI: 10.1007/s11430-011-4203-4.
[43] ZHAI M, ZHU R, LIU J, et al. Time range of Mesozoic tectonic regime inversion in eastern North China Block[J/OL]. Science in China Series D: Earth Sciences, 2004, 47(2): 151-159. DOI: 10.1360/02yd0416.
[44] LI S Z, KUSKY T M, ZHAO G, et al. Mesozoic tectonics in the Eastern Block of the North China Craton: Implications for subduction of the Pacific plate beneath the Eurasian plate[M/OL]//ZHAI M G, WINDLEY B F, KUSKY T M, et al. Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia: volume 280. Geological Society, London, Special Publications, 2007: 171-188. DOI: 10.1144/SP280.8.
[45] WANG H, LIANG J. Tectonic Evolution of Late Mesozoic–Cenozoic Basins in Eastern China and Implications for Pacific Plate Subduction[J/OL]. Russian Geology and Geophysics, 2019, 60(4): 472-491. DOI: 10.15372/RGG2019071.
[46] ZHU R, XU Y, ZHU G, et al. Destruction of the North China Craton[J/OL]. Science China Earth Sciences, 2012, 55(10): 1565-1587. DOI: 10.1007/s11430-012-4516-y.
[47] WANG T, GUO L, ZHENG Y, et al. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U–Pb ages from metamorphic core complexes[J/OL]. Lithos, 2012, 154: 315-345. DOI: 10.1016/j.lithos.2012.07.020.
[48] WU F, LIN J, WILDE S, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J/OL]. Earth and Planetary Science Letters, 2005, 233(1-2): 103-119. DOI: 10.1016/j.epsl.2005.02.019.
[49] ZHANG H F, ZHU R X, SANTOSH M, et al. Episodic widespread magma underplating beneath the North China Craton in the Phanerozoic: Implications for craton destruction[J/OL]. Gondwana Research, 2013, 23(1): 95-107. DOI: 10.1016/j.gr.2011.12.006.
[50] ZHANG Y Q, MERCIER J L, VERGÉLY P. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia[J/OL]. Tectonophysics, 1998, 285(1-2): 41-75. DOI: 10.1016/S0040-1951(97)00170-4.
[51] YE H, ZHANG B, MAO F. The Cenozoic tectonic evolution of the Great North China: Two types of rifting and crustal necking in the Great North China and their tectonic implications[J/OL]. Tectonophysics, 1987, 133(3-4): 217-227. DOI: 10.1016/0040-1951(87)90265-4.
[52] REN J, TAMAKI K, LI S, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J/OL]. Tectonophysics, 2002, 344(3-4): 175-205. DOI: 10.1016/S0040-1951(01)00271-2.
[53] ZHANG Y, MA Y, YANG N, et al. Cenozoic extensional stress evolution in North China[J/OL]. Journal of Geodynamics, 2003, 36(5): 591-613. DOI: 10.1016/j.jog.2003.08.001.
[54] XU Y G, CHUNG S L, MA J, et al. Contrasting Cenozoic Lithospheric Evolution and Architecture in the Western and Eastern Sino-Korean Craton: Constraints from Geochemistry of Basalts and Mantle Xenoliths[J/OL]. The Journal of Geology, 2004, 112(5): 593-605. DOI: 10.1086/422668.
[55] CHEN L. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications[J/OL]. Lithos, 2010, 120(1-2): 96-115. DOI: 10.1016/j.lithos.2009.12.007.
[56] TANG Y, CHEN Y J, ZHOU S, et al. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2333-2346. DOI: 10.1002/jgrb.50191.
[57] XU Y G. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling–Taihangshan gravity lineament[J/OL]. Lithos, 2007, 96(1-2): 281-298. DOI: 10.1016/j.lithos.2006.09.013.
[58] HU S, HE L, WANG J. Heat flow in the continental area of China: A new data set[J/OL]. Earth and Planetary Science Letters, 2000, 179(2): 407-419. DOI: 10.1016/S0012-821X(00)00126-6.
[59] HUANG J, ZHAO D. High-resolution mantle tomography of China and surrounding regions[J/OL]. Journal of Geophysical Research, 2006, 111(B9): B09305. DOI: 10.1029/2005JB004066.
[60] XU X, MA X. Geodynamics of the Shanxi Rift system, China[J/OL]. Tectonophysics, 1992, 208(1-3): 325-340. DOI: 10.1016/0040-1951(92)90353-8.
[61] SHI W, CEN M, CHEN L, et al. Evolution of the late Cenozoic tectonic stress regime in the Shanxi Rift, central North China Plate inferred from new fault kinematic analysis[J/OL]. Journal of Asian Earth Sciences, 2015, 114: 54-72. DOI: 10.1016/j.jseaes.2015.04.044.
[62] XU X, MA X, DENG Q. Neotectonic activity along the Shanxi rift system, China[J/OL]. Tectonophysics, 1993, 219(4): 305-325. DOI: 10.1016/0040-1951(93)90180-R.
[63] XU Y G, MA J L, FREY F A, et al. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton[J/OL]. Chemical Geology, 2005, 224(4): 247-271. DOI: 10.1016/j.chemgeo.2005.08.004.
[64] ZHENG J, GRIFFIN W, O’REILLY S, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J/OL]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5203-5225. DOI: 10.1016/j.gca.2007.07.028.
[65] DENG J, MO X, ZHAO H, et al. A new model for the dynamic evolution of Chinese lithosphere: ‘continental roots–plume tectonics’[J/OL]. Earth-Science Reviews, 2004, 65(3-4): 223-275. DOI: 10.1016/j.earscirev.2003.08.001.
[66] WILDE S A, ZHOU X, NEMCHIN A A, et al. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia[J/OL]. Geology, 2003, 31(9): 817-820. DOI: 10.1130/G19489.1.
[67] ZHANG H F. Temporal and spatial distribution of Mesozoic mafic magmatism in the North China Craton and implications for secular lithospheric evolution[M/OL]//ZHAI M G, WINDLEY B F, KUSKY T M, et al. Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia: volume 280. Geological Society of London, 2007: 35-54. DOI: 10.1144/SP280.2.
[68] NORTHRUP C J, ROYDEN L H, BURCHFIEL B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J/OL]. Geology, 1995, 23(8): 719-722. DOI: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2.
[69] MOLNAR P, TAPPONNIER P. Relation of the tectonics of eastern China to the India-Eurasia collision: Application of slip-line field theory to large-scale continental tectonics[J/OL]. Geology, 1977, 5(4): 212-216. DOI: 10.1130/0091-7613(1977)5<212:ROTTOE>2.0.CO;2.
[70] LEI J. Upper-mantle tomography and dynamics beneath the North China Craton[J/OL]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6): B06313. DOI: 10.1029/2012JB009212.
[71] ZHAO L, ALLEN R M, ZHENG T, et al. Reactivation of an Archean craton: Constraints from P- and S-wave tomography in North China[J/OL]. Geophysical Research Letters, 2009, 36(17): L17306. DOI: 10.1029/2009GL039781.
[72] LI S, GUO Z, CHEN Y J, et al. Lithospheric Structure of the Northern Ordos From Ambient Noise and Teleseismic Surface Wave Tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6940-6957. DOI: 10.1029/2017JB015256.
[73] RITZWOLLER M H, LEVSHIN A L. Eurasian surface wave tomography: Group velocities[J/OL]. Journal of Geophysical Research: Solid Earth, 1998, 103(B3): 4839-4878. DOI: 10.1029/97JB02622.
[74] PRINDLE K, TANIMOTO T. Teleseismic surface wave study for S -wave velocity structure under an array: Southern California[J/OL]. Geophysical Journal International, 2006, 166(2): 601-621. DOI: 10.1111/j.1365-246X.2006.02947.x.
[75] WANG J, WU G, CHEN X. Frequency-Bessel Transform Method for Effective Imaging of Higher-Mode Rayleigh Dispersion Curves From Ambient Seismic Noise Data[J/OL]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723. DOI: 10.1029/2018JB016595.
[76] DZIEWONSKI A, BLOCH S, LANDISMAN M. A Technique for the Analysis of Transient Seismic Signals[J/OL]. Bulletin of the Seismological Society of America, 1969, 59(1): 427-444. DOI: 10.1785/BSSA0590010427.
[77] LEVSHIN A, RATNIKOVA L, BERGER J. Peculiarities of surface-wave propagation across central Eurasia[J/OL]. Bulletin of the Seismological Society of America, 1992, 82(6): 2464-2493. DOI: 10.1785/BSSA0820062464.
[78] RITZWOLLER M H, SHAPIRO N M, BARMIN M P, et al. Global surface wave diffraction tomography[J/OL]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): ESE 4-1-ESE 4-13. DOI: 10.1029/2002JB001777.
[79] FANG H, YAO H, ZHANG H, et al. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application[J/OL]. Geophysical Journal International, 2015, 201(3): 1251-1263. DOI: 10.1093/gji/ggv080.
[80] ZHOU Y, NOLET G, DAHLEN F A, et al. Global upper-mantle structure from finite-frequency surface-wave tomography[J/OL]. Journal of Geophysical Research, 2006, 111(B4): B04304. DOI: 10.1029/2005JB003677.
[81] LIN F C, RITZWOLLER M H, SNIEDER R. Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array[J/OL]. Geophysical Journal International, 2009, 177(3): 1091-1110. DOI: 10.1111/j.1365-246X.2009.04105.x.
[82] LIN F C, RITZWOLLER M H. Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure[J/OL]. Geophysical Journal International, 2011, 186(3): 1104-1120. DOI: 10.1111/j.1365-246X.2011.05070.x.
[83] WANG K, LU L, MAUPIN V, et al. Surface Wave Tomography of Northeastern Tibetan Plateau Using Beamforming of Seismic Noise at a Dense Array[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): e2019JB018416. DOI: 10.1029/2019JB018416.
[84] LI Z, CHEN X. An Effective Method to Extract Overtones of Surface Wave From Array Seismic Records of Earthquake Events[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511. DOI: 10.1029/2019JB018511.
[85] AKI K. Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35: 415-456.
[86] AKI K. A note on the use of microseisms in determining the shallow structure of the Earth’s crust[J/OL]. Geophysics, 1965, 30(4): 665-666. DOI: 10.1190/1.1439640.
[87] PARK C B, MILLER R D, XIA J. Imaging dispersion curves of surface waves on multi-channel record[C/OL]//SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, 1998: 1377-1380. DOI: 10.1190/1.1820161.
[88] MCMECHAN G A, YEDLIN M J. Analysis of dispersive waves by wave field transformation[J/OL]. Geophysics, 1981, 46(6): 869-874. DOI: 10.1190/1.1441225.
[89] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J/OL]. Proceedings of the IEEE, 1969, 57(8): 1408-1418. DOI: 10.1109/PROC.1969.7278.
[90] LACOSS R T, KELLY E J, TOKSÖZ M N. Estimation of Seismic Noise Structure Using Arrays[J/OL]. Geophysics, 1969, 34(1): 21-38. DOI: 10.1190/1.1439995.
[91] LUO Y, XIA J, MILLER R D, et al. Rayleigh-Wave Dispersive Energy Imaging Using a High-Resolution Linear Radon Transform[J/OL]. Pure and Applied Geophysics, 2008, 165(5): 903-922. DOI: 10.1007/s00024-008-0338-4.
[92] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J/OL]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. DOI: 10.1109/TIT.2005.862083.
[93] CANDES E J, WAKIN M B. An Introduction To Compressive Sampling[J/OL]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. DOI: 10.1109/MSP.2007.914731.
[94] DONOHO D L. Compressed sensing[J/OL]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. DOI: 10.1109/TIT.2006.871582.
[95] DREMEAU A, LE COURTOIS F, BONNEL J. Reconstruction of Dispersion Curves in the Frequency-Wavenumber Domain Using Compressed Sensing on a Random Array[J/OL]. IEEE Journal of Oceanic Engineering, 2017, 42(4): 914-922. DOI: 10.1109/JOE.2016.2644780.
[96] LE COURTOIS F, BONNEL J. Compressed sensing for wideband wavenumber tracking in dispersive shallow water[J/OL]. The Journal of the Acoustical Society of America, 2015, 138(2): 575-583. DOI: 10.1121/1.4926381.
[97] CHEN Z, JIANG B, SONG J, et al. Accurate Sparse Recovery of Rayleigh Wave Characteristics Using Fast Analysis of Wave Speed (FAWS) Algorithm for Soft Soil Layers[J/OL]. Applied Sciences, 2018, 8(7): 1204. DOI: 10.3390/app8071204.
[98] HARLEY J B, MOURA J M F. Sparse recovery of the multimodal and dispersive characteristics of Lamb waves[J/OL]. The Journal of the Acoustical Society of America, 2013, 133(5): 2732-2745. DOI: 10.1121/1.4799805.
[99] HARLEY J B. Predictive Guided Wave Models Through Sparse Modal Representations[J/OL]. Proceedings of the IEEE, 2016, 104(8): 1604-1619. DOI: 10.1109/JPROC.2015.2481438.
[100] CHENG C, CHEN L, YAO H, et al. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications[J/OL]. Gondwana Research, 2013, 23(1): 25-38. DOI: 10.1016/j.gr.2012.02.014.
[101] TIAN Y, ZHAO D. Destruction mechanism of the North China Craton: Insight from P and S wave mantle tomography[J/OL]. Journal of Asian Earth Sciences, 2011, 42(6): 1132-1145. DOI: 10.1016/j.jseaes.2011.06.010.
[102] HE L, GUO Z, CHEN Y J, et al. Seismic Imaging of a Magma Chamber and Melt Recharge of the Dormant Datong Volcanoes[J/OL]. Earth and Space Science, 2021, 8(12): e2021EA001931. DOI: 10.1029/2021EA001931.
[103] XU X, DING Z, GUO H, et al. Seismic Tomography of the Trans-North China Orogen and Its Dynamic Implications[J/OL]. Frontiers in Earth Science, 2022, 10: 948040. DOI: 10.3389/feart.2022.948040.
[104] CHEN L. Lithospheric structure variations between the eastern and central North China Craton from S- and P-receiver function migration[J/OL]. Physics of the Earth and Planetary Interiors, 2009, 173(3-4): 216-227. DOI: 10.1016/j.pepi.2008.11.011.
[105] ZHENG T, ZHAO L, ZHU R. New evidence from seismic imaging for subduction during assembly of the North China craton[J/OL]. Geology, 2009, 37(5): 395-398. DOI: 10.1130/G25600A.1.
[106] JIA S, WANG F, TIAN X, et al. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile[J/OL]. Tectonophysics, 2014, 627: 48-56. DOI: 10.1016/j.tecto.2014.04.013.
[107] HUANG Z, WANG L, ZHAO D, et al. Seismic anisotropy and mantle dynamics beneath China[J/OL]. Earth and Planetary Science Letters, 2011, 306(1-2): 105-117. DOI: 10.1016/j.epsl.2011.03.038.
[108] ZHAO L, ZHENG T, LU G, et al. No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision: Constraints from new SKS wave splitting measurements[J/OL]. Geophysical Journal International, 2011, 187(2): 1027-1037. DOI: 10.1111/j.1365-246X.2011.05201.x.
[109] AI S, ZHENG Y, RIAZ M S, et al. Seismic Evidence on Different Rifting Mechanisms in Southern and Northern Segments of the Fenhe-Weihe Rift Zone[J/OL]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 609-630. DOI: 10.1029/2018JB016476.
[110] CAI Y, WU J, RIETBROCK A, et al. S wave Velocity Structure of the Crust and Upper Mantle Beneath Shanxi Rift, Central North China Craton and its Tectonic Implications[J/OL]. Tectonics, 2021, 40(4): e2020TC006239. DOI: 10.1029/2020TC006239.
[111] BAO X, SONG X, XU M, et al. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications[J/OL]. Earth and Planetary Science Letters, 2013, 369–370: 129-137. DOI: 10.1016/j.epsl.2013.03.015.
[112] JIANG M, AI Y, CHEN L, et al. Local modification of the lithosphere beneath the central and western North China Craton: 3-D constraints from Rayleigh wave tomography[J/OL]. Gondwana Research, 2013, 24(3-4): 849-864. DOI: 10.1016/j.gr.2012.06.018.
[113] CHEN L, JIANG M, YANG J, et al. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton[J/OL]. Geology, 2014, 42(3): 223-226. DOI: 10.1130/G35010.1.
[114] ZHANG Y, CHEN L, AI Y, et al. Lithospheric structure beneath the central and western North China Craton and adjacent regions from S-receiver function imaging[J/OL]. Geophysical Journal International, 2019, 219(1): 619-632. DOI: 10.1093/gji/ggz322.
[115] DONG X, YANG D, NIU F, et al. Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the North China craton[J/OL]. Scientific Reports, 2021, 11(1): 12523. DOI: 10.1038/s41598-021-92048-8.
[116] ZHANG H, HUANG Q, ZHAO G, et al. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes[J/OL]. Earth and Planetary Science Letters, 2016, 453: 182-192. DOI: 10.1016/j.epsl.2016.08.025.
[117] CHEN L, AI Y. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration[J/OL]. Journal of Geophysical Research, 2009, 114(B6): B06307. DOI: 10.1029/2008JB006221.
[118] ZHENG T, ZHAO L, CHEN L. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin[J/OL]. Physics of the Earth and Planetary Interiors, 2005, 152(3): 129-143. DOI: 10.1016/j.pepi.2005.06.011.
[119] Sanchez-Sesma F J, CAMPILLO M. Retrieval of the Green’s Function from Cross Correlation: The Canonical Elastic Problem[J/OL]. Bulletin of the Seismological Society of America, 2006, 96(3): 1182-1191. DOI: 10.1785/0120050181.
[120] CHEN X. Seismogram Synthesis in Multi-layered Half-space Part I. Theoretical Formulations[J]. Earthquake Research in China, 1999, 13(2): 149-174.
[121] FU L, PAN L, LI Z, et al. Improved High-Resolution 3D Vs Model of Long Beach, CA: Inversion of Multimodal Dispersion Curves From Ambient Noise of a Dense Array[J/OL]. Geophysical Research Letters, 2022, 49(4): e2021GL097619. DOI: 10.1029/2021GL097619.
[122] WU G X, PAN L, WANG J N, et al. Shear Velocity Inversion Using Multimodal Dispersion Curves From Ambient Seismic Noise Data of USArray Transportable Array[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018213. DOI: 10.1029/2019JB018213.
[123] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J/OL]. Journal of Asian Earth Sciences, 2020, 196: 104372. DOI: 10.1016/j.jseaes.2020.104372.
[124] MA Q, PAN L, WANG J N, et al. Crustal S-Wave Velocity Structure Beneath the Northwestern Bohemian Massif, Central Europe, Revealed by the Inversion of Multimodal Ambient Noise Dispersion Curves[J/OL]. Frontiers in Earth Science, 2022, 10: 838751. DOI: 10.3389/feart.2022.838751.
[125] YANG Z, CHEN X, PAN L, et al. Multi-channel analysis of Rayleigh waves based on the Vector Wavenumber Tansformation Method (VWTM)[J/OL]. Chinese Journal of Geophysics (in Chinese), 2019, 62(1): 298-305. DOI: 10.6038/cjg2019M0641.
[126] LI Z, SHI C, CHEN X. Constraints on Crustal P Wave Structure With Leaking Mode Dispersion Curves[J/OL]. Geophysical Research Letters, 2021, 48(20): e2020GL091782. DOI: 10.1029/2020GL091782.
[127] LI Z, SHI C, REN H, et al. Multiple Leaking Mode Dispersion Observations and Applications From Ambient Noise Cross-Correlation in Oklahoma[J/OL]. Geophysical Research Letters, 2022, 49(1): e2021GL096032. DOI: 10.1029/2021GL096032.
[128] ZHOU J, CHEN X. Removal of Crossed Artifacts from Multimodal Dispersion Curves with Modified Frequency–Bessel Method[J/OL]. Bulletin of the Seismological Society of America, 2022, 112(1): 143-152. DOI: 10.1785/0120210012.
[129] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J/OL]. Geophysical Journal International, 2019, 216(2): 1276-1303. DOI: 10.1093/gji/ggy479.
[130] CHEN X. A systematic and efficient method of computing normal modes for multilayered half-space[J/OL]. Geophysical Journal International, 1993, 115(2): 391-409. DOI: 10.1111/j.1365-246X.1993.tb01194.x.
[131] HANSEN P C. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve[J/OL]. SIAM Review, 1992, 34(4): 561-580. DOI: 10.1137/1034115.
[132] HISADA Y. An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths[J/OL]. Bulletin of the Seismological Society of America, 1994, 84(5): 1456-1472. DOI: 10.1785/BSSA0840051456.
[133] LUCO J E, APSEL R J. On the Green’s functions for a layered half-space. Part I[J/OL]. Bulletin of the Seismological Society of America, 1983, 73(4): 909-929. DOI: 10.1785/BSSA0730040909.
[134] SNIEDER R, WAPENAAR K, WEGLER U. Unified Green’s function retrieval by cross-correlation; connection with energy principles[J/OL]. Physical Review E, 2007, 75(3): 036103. DOI: 10.1103/PhysRevE.75.036103.
[135] CANDES E, TAO T. Decoding by Linear Programming[J/OL]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215. DOI: 10.1109/TIT.2005.858979.
[136] BARANIUK R G. Compressive Sensing [Lecture Notes][J/OL]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. DOI: 10.1109/MSP.2007.4286571.
[137] BARANIUK R, DAVENPORT M, DEVORE R, et al. A Simple Proof of the Restricted Isometry Property for Random Matrices[J/OL]. Constructive Approximation, 2008, 28(3): 253-263. DOI: 10.1007/s00365-007-9003-x.
[138] TROPP J A, GILBERT A C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit[J/OL]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. DOI: 10.1109/TIT.2007.909108.
[139] DONOHO D L, TSAIG Y, DRORI I, et al. Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit[J/OL]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. DOI: 10.1109/TIT.2011.2173241.
[140] CHEN S S, DONOHO D L, SAUNDERS M A. Atomic Decomposition by Basis Pursuit[J/OL]. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61. DOI: 10.1137/S1064827596304010.
[141] DONOHO D, ELAD M, TEMLYAKOV V. Stable recovery of sparse overcomplete representations in the presence of noise[J/OL]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18. DOI: 10.1109/TIT.2005.860430.
[142] JI S, XUE Y, CARIN L. Bayesian Compressive Sensing[J/OL]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356. DOI: 10.1109/TSP.2007.914345.
[143] WIPF D, RAO B. Sparse Bayesian Learning for Basis Selection[J/OL]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164. DOI: 10.1109/TSP.2004.831016.
[144] ZHANG Z, RAO B D. Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning[J/OL]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. DOI: 10.1109/JSTSP.2011.2159773.
[145] GRANT M, BOYD S. CVX: Matlab software for disciplined convex programming, version 2.1[EB/OL]. 2014. http://cvxr.com/cvx.
[146] HU S, LUO S, YAO H. The Frequency-Bessel Spectrograms of Multicomponent Cross-Correlation Functions From Seismic Ambient Noise[J/OL]. Journal of Geophysical Research: Solid Earth, 2020, 125(8): e2020JB019630. DOI: 10.1029/2020JB019630.
[147] IKEDA T, MATSUOKA T, TSUJI T, et al. Multimode inversion with amplitude response of surface waves in the spatial autocorrelation method[J/OL]. Geophysical Journal International, 2012, 190(1): 541-552. DOI: 10.1111/j.1365-246X.2012.05496.x.
[148] ZHANG H M, CHEN X F, CHANG S. An Efficient Numerical Method for Computing Synthetic Seismograms for a Layered Half-space with Sources and Receivers at Close or Same Depths[J/OL]. Pure and Applied Geophysics, 2003, 160: 467-486. DOI: 10.1007/PL00012546.
[149] BENSEN G D, RITZWOLLER M H, BARMIN M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J/OL]. Geophysical Journal International, 2007, 169(3): 1239-1260. DOI: 10.1111/j.1365-246X.2007.03374.x.
[150] SHEN W, RITZWOLLER M H, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J/OL]. Geophysical Journal International, 2016, 206(2): 954-979. DOI: 10.1093/gji/ggw175.
[151] BROCHER T M. Empirical Relations between Elastic Wavespeeds and Density in the Earth’s Crust[J/OL]. Bulletin of the Seismological Society of America, 2005, 95(6): 2081-2092. DOI: 10.1785/0120050077.
[152] CHINARRAY. China seismic array waveform data[M/OL]. Institute of Geophysics, China Earthquake Administration, 2006. DOI: 10.7914/SN/6B_2006.
[153] CHINARRAY-HIMALAYA. China seismic array waveform data of himalaya project[M/OL]. Institute of Geophysics, China Earthquake Administration, Beijing, 2011. DOI: 10.12001/ChinArray.Data.
[154] STUMP B. A comparative study of natural and man-induced seismicity in the yanquing-huailai basin and the haicheng area [data set][M/OL]. International Federation of Digital Seismograph Networks, 2002. https://www.fdsn.org/networks/detail/XG_2002/. DOI: 10.7914/SN/XG_2002.
[155] GRAND S, NI J. Collaborative research: Northeast china extended seismic array: Deep subduction, mantle dynamics and lithospheric evolution beneath northeast china [data set][M/OL]. International Federation of Digital Seismograph Networks, 2009. https://www.fdsn.org/networks/detail/YP_2009/. DOI: 10.7914/SN/YP_2009.
[156] XIU-FEN Z, BIAO O, DONG-NING Z, et al. Technical system construction of data backup centre for china seismograph network and the data support to researches on the wenchuan earthquake[J/OL]. Chinese Journal of Geophysics (in Chinese), 2009, 52(5): 1412-1417. http://www.geophy.cn//article/id/cjg_1034. DOI: 10.3969/j.issn.0001-5733.2009.05.031.
[157] ZHENG T, DUAN Y, XU W, et al. A seismic model for crustal structure in North China Craton[J/OL]. Earth and Planetary Physics, 2017, 1(1): 26-34. DOI: 10.26464/epp2017004.
[158] FANG L, WU J, DING Z, et al. High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise[J/OL]. Geophysical Journal International, 2010, 181(2): 1171-1182. DOI: 10.1111/j.1365-246X.2010.04571.x.
[159] HUANG X, DING Z, NING J, et al. Sedimentary and crustal velocity structure of Trans-North China Orogen from joint inversion of Rayleigh wave phase velocity and ellipticity and some implication for Syn-rift volcanism[J/OL]. Tectonophysics, 2021, 819: 229104. DOI: 10.1016/j.tecto.2021.229104.
[160] AI S, ZHENG Y, HE L, et al. Joint inversion of ambient noise and earthquake data in the Trans-North China Orogen: On-going lithospheric modification and its impact on the Cenozoic continental rifting[J/OL]. Tectonophysics, 2019, 763: 73-85. DOI: 10.1016/j.tecto.2019.05.003.
[161] FORBRIGER T. Inversion of shallow-seismic wavefields: I. Wavefield transformation[J/OL]. Geophysical Journal International, 2003, 153(3): 719-734. DOI: 10.1046/j.1365-246X.2003.01929.x.
[162] YAO H, van der Hilst R D, MONTAGNER J P. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J/OL]. Journal of Geophysical Research, 2010, 115(B12): B12307. DOI: 10.1029/2009JB007142.
[163] 李正波. 频率贝塞尔变换法提取地震记录中的频散信息 [D]. 合肥,中国: 中国科学技术大学, 2020.
[164] XU Z. Seismic study of the crust and upper mantle structure in eastern Asia using ambient noise correlation and earthquake data[D]. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2011.
[165] JIA S X, ZHANG X K. Crustal Structure and Comparison of Different Tectonic Blocks in North China[J/OL]. Chinese Journal of Geophysics, 2005, 48(3): 672-683. DOI: 10.1002/cjg2.700.
[166] LIU J H, LIU F T, YAN X W, et al. A Study of Lg Coda Attenuation beneath North China: Seismic Imaging of Lg Coda Q 0[J/OL]. Chinese Journal of Geophysics, 2004, 47(6): 1175-1185. DOI: 10.1002/cjg2.603.
[167] ZHAO L, ALLEN R M, ZHENG T, et al. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas[J/OL]. Geochemistry, Geophysics, Geosystems, 2012, 13(6): Q06007. DOI: 10.1029/2012GC004119.
[168] WEI W, YE G, JIN S, et al. Geoelectric Structure of Lithosphere Beneath Eastern North China: Features of Thinned Lithosphere from Magnetotelluric Soundings[J/OL]. Earth Science Frontiers, 2008, 15(4): 204-216. DOI: 10.1016/S1872-5791(08)60055-X.
[169] SHEN Z K, ZHAO C, YIN A, et al. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements[J/OL]. Journal of Geophysical Research: Solid Earth, 2000, 105(B3): 5721-5734. DOI: 10.1029/1999JB900391.
[170] ZHENG T Y, ZHAO L, ZHU R X. Insight into the geodynamics of cratonic reactivation from seismic analysis of the crust-mantle boundary[J/OL]. Geophysical Research Letters, 2008, 35(8): L08303. DOI: 10.1029/2008GL033439.
[171] FAN Q, ZHANG H, SUI J, et al. Magma underplating and Hannuoba present crust-mantle transitional zone composition: Xenolith petrological and geochemical evidence[J/OL]. Science in China Series D: Earth Sciences, 2005, 48(8): 1089-1105. DOI: 10.1360/04yd0007.
[172] ZHENG J, GRIFFIN W, QI L, et al. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton[J/OL]. Chemical Geology, 2009, 264(1-4): 266-280. DOI: 10.1016/j.chemgeo.2009.03.011.

所在学位评定分委会
地球与空间科学系
国内图书分类号
P315.2
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/534745
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
高丽娜. 高阶面波频散曲线的提取及华北克拉通地区三维S波速度构建[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749315-高丽娜-地球与空间科学(56759KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[高丽娜]的文章
百度学术
百度学术中相似的文章
[高丽娜]的文章
必应学术
必应学术中相似的文章
[高丽娜]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。