题名 | GuidedMix-Net Semi-supervised Semantic Segmentation by Using Labeled Images as Reference |
作者 | |
通讯作者 | Feng Zheng |
共同第一作者 | Peng Tu; Yawen Huang |
DOI | |
发表日期 | 2021-12-28
|
会议名称 | AAAI
|
会议日期 | 2022/2/22-2022/3/1
|
会议地点 | virtual
|
摘要 | Semi-supervised learning is a challenging problem which aims to construct a model by learning from limited labeled examples. Numerous methods for this task focus on utilizing the predictions of unlabeled instances consistency alone to regularize networks. However, treating labeled and unlabeled data separately often leads to the discarding of mass prior knowledge learned from the labeled examples. In this paper, we propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net, by leveraging labeled information to guide the learning of unlabeled instances. Specifically, GuidedMix-Net employs three operations: 1) interpolation of similar labeled-unlabeled image pairs; 2) transfer of mutual information; 3) generalization of pseudo masks. It enables segmentation models can learning the higher-quality pseudo masks of unlabeled data by transfer the knowledge from labeled samples to unlabeled data. Along with supervised learning for labeled data, the prediction of unlabeled data is jointly learned with the generated pseudo masks from the mixed data. Extensive experiments on PASCAL VOC 2012, and Cityscapes demonstrate the effectiveness of our GuidedMix-Net, which achieves competitive segmentation accuracy and significantly improves the mIoU by +7% compared to previous approaches. |
学校署名 | 第一
; 通讯
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/534762 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technolog, Shenzhen, China 2.Shenzhen Microbt Electronics Technology Co., Ltd, China 3.Tencent Jarvis Lab, Shenzhen, China 4.Harbin Institute of Technology, Shenzhen, China 5.Xiamen University, Xiamen, China 6.National Center for Artificial Intelligence, Saudi Data and Artificial Intelligence Authority, Riyadh, Saudi Arabia |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Peng Tu,Yawen Huang,Feng Zheng,et al. GuidedMix-Net Semi-supervised Semantic Segmentation by Using Labeled Images as Reference[C],2021.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
AAAI2022-GuidedMix-N(934KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论