中文版 | English
题名

Analyses and optimizations of interface layers for perovskite light-emitting diodes

姓名
姓名拼音
XIAO Xiangtian
学号
11750030
学位类型
博士
学位专业
电子与电气工程
导师
王恺
导师单位
电子与电气工程系
论文答辩日期
2023-03-02
论文提交日期
2023-05-18
学位授予单位
香港大学
学位授予地点
香港
摘要

Perovskite nanocrystals (NCs) are crystalline materials featuring unique and attractive properties, such as excellent carrier mobilities, long carrier diffusion length, and solution processability. As a promising candidate for efficient light emission devices, NCs based perovskite light-emitting diodes (PeLEDs) have been widely investigated. To obtain efficient and stable PeLEDs, realizing sufficient and balance carrier injection is vital. However, due to issues at the interface layer, such as the energy barrier and serious carrier accumulation, carrier injection may be affected. Meanwhile, strategies that can describe the carrier behaviours at interface layer are lacked. To solve these issues and promote the efficient PeLEDs, we have conducted the following researches:
1. Establish a capacitance-voltage (C-V) model for PeLEDs to describe carrier behaviours Analyzing and optimizing carrier behaviours are essential to achieve high electroluminescence performances for PeLEDs. In this work, C-V model for PeLEDs is established to describe carrier behaviours. Four distinct regions in this typical C-V model, including neutrality region, barrier region, carrier diffusion region, and carrier recombination region, were respectively analyzed. Importantly, the C-V model can guide the electroluminescence performance improvements for PeLEDs. By analyzing their C-V characteristics, issues of high hole injection barrier and insufficient recombination can be revealed. The C-V model helps quantitatively understand the essential carrier behaviours, and serves an efficient method to improve the EL performance for PeLEDs.
2. Introduce electric dipole layer for interfacial optimizations to enhance the hole injection in PeLEDs Carrier balance is essential to achieve high performance in PeLEDs. In this work, an efficient strategy by introducing an electric dipole layer is proposed to enhance the minority carrier injection, and realize carrier balance. The hopping theory demonstrates electric dipoles between hole injection layer (HIL) and hole transport layer (HTL) will enhance the hole injection. Then, MoO3 is chosen to generate electric dipoles due to its deep conduction band level. C-V analyses further prove there is the efficient hole injection. The proposed PeLEDs achieve a high current efficiency of 72.7 cd A-1, indicating a feasible approach to achieve a high PeLEDs performance.
3. Propose the efficient and stable PeLED based on poly(maleic anhydride-alt -1-octadecene) (PMA)-NCs and interfacial optimizations The efficient and stable PeLED based on PMA-NCs is realized through interfacial optimizations. First, the stable CsPbI3 NCs with PMA ligand is prepared.
Then, interfacial optimizations are implemented to enhance the hole injection, and realize better carrier balance. Firstly, MoO3 is introduced to reduce the hole injection barrier between HIL and HTL. Then, 2,2'-(Perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6-TCNNQ) is implemented as the electric dipole layer between HTL and emission layer (EML). Based on theoretical analysis and simulations, such an electric dipole layer can further enhance the hole injection and reduce the interfacial energy barrier. Therefore, the sufficient hole injection in the device can be realized. Additionally, optical optimization by microcavity design is implemented to realize sufficient light extraction. As the result, the performance of the proposed PeLED is significantly boosted, showing a relatively high external quantum efficiency of 20.9% and superior operational stability with T50 of 320 hours.

关键词
语种
英语
培养类别
联合培养
入学年份
2017
学位授予年份
2023-07
参考文献列表

Chapter1:
[1] U.S. Energy Information Administration. Annual Energy Outlook 2022. March,2022.
[2] Shi, Zhengqi, and Ahalapitiya Jayatissa. 2018. “Perovskites-Based Solar Cells:A Review of Recent Progress, Materials and Processing Methods.” Materials11 (5): 729.
[3] Ha, Son-Tung, Rui Su, Jun Xing, Qing Zhang, and Qihua Xiong. 2017. “MetalHalide Perovskite Nanomaterials: Synthesis and Applications.” ChemicalScience 8 (4): 2522–36.
[4] Stranks, Samuel D., and Henry J. Snaith. 2015. “Metal-Halide Perovskites forPhotovoltaic and Light-Emitting Devices.” Nature Nanotechnology 10 (5):391–402.
[5] Zhao, Yixin, and Kai Zhu. 2016. “Organic–Inorganic Hybrid Lead HalidePerovskites for Optoelectronic and Electronic Applications.” Chemical SocietyReviews 45 (3): 655–89.
[6] Hoffman, Jacob B., A. Lennart Schleper, and Prashant V. Kamat. 2016.“Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 andGradient CsPbBrxI3–x through Halide Exchange.” Journal of the AmericanChemical Society 138 (27): 8603–11.
[7] Chen, Qi, Nicholas De Marco, Yang (Michael) Yang, Tze-Bin Song, Chun19Chao Chen, Hongxiang Zhao, Ziruo Hong, Huanping Zhou, and Yang Yang.2015. “Under the Spotlight: The Organic–Inorganic Hybrid Halide Perovskitefor Optoelectronic Applications.” Nano Today 10 (3): 355–96.
[8] Stoumpos, Constantinos C., Christos D. Malliakas, and Mercouri G. Kanatzidis.2013. “Semiconducting Tin and Lead Iodide Perovskites with Organic Cations:Phase Transitions, High Mobilities, and Near-Infrared PhotoluminescentProperties.” Inorganic Chemistry 52 (15): 9019–38.
[9] Travis, W., E. N. K. Glover, H. Bronstein, D. O. Scanlon, and R. G. Palgrave.2016. “On the Application of the Tolerance Factor to Inorganic and HybridHalide Perovskites: A Revised System.” Chemical Science 7 (7): 4548–56.
[10]Kovalenko, Maksym V., Loredana Protesescu, and Maryna I. Bodnarchuk.2017. “Properties and Potential Optoelectronic Applications of Lead HalidePerovskite Nanocrystals.” Science 358 (6364): 745–50.
[11]Correa-Baena, Juan-Pablo, Antonio Abate, Michael Saliba, Wolfgang Tress, T.Jesper Jacobsson, Michael Grätzel, and Anders Hagfeldt. 2017. “The RapidEvolution of Highly Efficient Perovskite Solar Cells.” Energy &Environmental Science 10 (3): 710–27.
[12]Binek, Andreas, Fabian C. Hanusch, Pablo Docampo, and Thomas Bein. 2015.“Stabilization of the Trigonal High-Temperature Phase of FormamidiniumLead Iodide.” The Journal of Physical Chemistry Letters 6 (7): 1249–53.
[13]Protesescu, Loredana, Sergii Yakunin, Maryna I. Bodnarchuk, Franziska Krieg,Riccarda Caputo, Christopher H. Hendon, Ruo Xi Yang, Aron Walsh, andMaksym V. Kovalenko. 2015. “Nanocrystals of Cesium Lead HalidePerovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic MaterialsShowing Bright Emission with Wide Color Gamut.” Nano Letters 15 (6):3692–96.
[14]Udayabhaskararao, Thumu, Miri Kazes, Lothar Houben, Hong Lin, and DanOron. 2017. “Nucleation, Growth, and Structural Transformations ofPerovskite Nanocrystals.” Chemistry of Materials 29 (3): 1302–1308.
[15]Byun, Jinwoo, Himchan Cho, Christoph Wolf, Mi Jang, Aditya Sadhanala,Richard H. Friend, Hoichang Yang, and Tae-Woo Lee. 2016. “PerovskiteLight-Emitting Diodes: Efficient Visible Quasi-2D Perovskite Light-EmittingDiodes (Adv. Mater. 34/2016).” Advanced Materials 28 (34): 7550–7550.
[16]Blancon, J.-C., H. Tsai, W. Nie, C. C. Stoumpos, L. Pedesseau, C. Katan, M.20Kepenekian, et al. 2017. “Extremely Efficient Internal Exciton Dissociationthrough Edge States in Layered 2D Perovskites.” Science 355 (6331): 1288–1292.
[17]Li, Xiaoming, Ye Wu, Shengli Zhang, Bo Cai, Yu Gu, Jizhong Song, andHaibo Zeng. 2016. “Quantum Dots: CsPbX3Quantum Dots for Lighting andDisplays: Room-Temperature Synthesis, Photoluminescence Superiorities,Underlying Origins and White Light-Emitting Diodes.” Advanced FunctionalMaterials 26 (15): 2584–2584.
[18]Dirin, Dmitry N., Loredana Protesescu, David Trummer, Ilia V. Kochetygov,Sergii Yakunin, Frank Krumeich, Nicholas P. Stadie, and Maksym V.Kovalenko. 2016. “Harnessing Defect-Tolerance at the Nanoscale: HighlyLuminescent Lead Halide Perovskite Nanocrystals in Mesoporous SilicaMatrixes.” Nano Letters 16 (9): 5866–5874.
[19]Semet, V., Ch. Adessi, T. Capron, R. Mouton, and Vu Thien Binh. 2007. “LowWork-Function Cathodes from Schottky to Field-Induced Ballistic ElectronEmission: Self-Consistent Numerical Approach.” Physical Review B 75 (4):45430.
[20]Simmons, J. G. 1965. “Richardson-Schottky Effect in Solids.” Physical ReviewLetters 15 (25): 967–968.
[21]Yuan, Mingjian, Li Na Quan, Riccardo Comin, Grant Walters, Randy Sabatini,Oleksandr Voznyy, Sjoerd Hoogland, et al. 2016. “Perovskite Energy Funnelsfor Efficient Light-Emitting Diodes.” Nature Nanotechnology 11 (10): 872–77.
[22]Feng, Y., and J. P. Verboncoeur. 2006. “Transition from Fowler-NordheimField Emission to Space Charge Limited Current Density.” Physics of Plasmas13 (7): 073105.
[23]Parker, I. D. 1994. “Carrier Tunneling and Device Characteristics in PolymerLight‐Emitting Diodes.” Journal of Applied Physics 75 (3): 1656–1666.
[24]Woudenbergh, T. van, J. Wildeman, and P. W. M. Blom. 2005. “ChargeInjection across a Polymeric Heterojunction.” Physical Review B 71 (20):205216.
[25]Herz, Laura M. 2016. “Charge-Carrier Dynamics in Organic-Inorganic MetalHalide Perovskites.” Annual Review of Physical Chemistry 67 (1): 65–89.
[26]deQuilettes, Dane W., Kyle Frohna, David Emin, Thomas Kirchartz, VladimirBulovic, David S. Ginger, and Samuel D. Stranks. 2019. “Charge-Carrier21Recombination in Halide Perovskites.” Chemical Reviews 119 (20): 11007–11019.
[27]Song, Jizhong, Jianhai Li, Xiaoming Li, Leimeng Xu, Yuhui Dong, and HaiboZeng. 2015. “Nanocrystals: Quantum Dot Light-Emitting Diodes Based onInorganic Perovskite Cesium Lead Halides (CsPbX3) (Adv. Mater. 44/2015).”Advanced Materials 27 (44): 7161–61.
[28]Zhang, Xiaoli, Bing Xu, Jinbao Zhang, Yuan Gao, Yuanjin Zheng, Kai Wang,and Xiao Wei Sun. 2016. “All-Inorganic Perovskite Nanocrystals for HighEfficiency Light Emitting Diodes: Dual-Phase CsPbBr3 -CsPb2 Br5Composites.” Advanced Functional Materials 26 (25): 4595–4600.
[29]Pan, Jun, Li Na Quan, Yongbiao Zhao, Wei Peng, Banavoth Murali, SmritakshiP. Sarmah, Mingjian Yuan, et al. 2016. “Highly Efficient Perovskite-QuantumDot Light-Emitting Diodes by Surface Engineering.” Advanced Materials 28(39): 8718–8725.
[30]Li, Jianhai, Leimeng Xu, Tao Wang, Jizhong Song, Jiawei Chen, Jie Xue,Yuhui Dong, et al. 2016. “50-Fold EQE Improvement up to 6.27% of SolutionProcessed All-Inorganic Perovskite CsPbBr3QLEDs via Surface LigandDensity Control.” Advanced Materials 29 (5): 1603885.
[31]Chiba, Takayuki, Keigo Hoshi, Yong-Jin Pu, Yuya Takeda, Yukihiro Hayashi,Satoru Ohisa, So Kawata, and Junji Kido. 2017. “High-Efficiency PerovskiteQuantum-Dot Light-Emitting Devices by Effective Washing Process andInterfacial Energy Level Alignment.” ACS Applied Materials & Interfaces 9(21): 18054–18060.
[32]Song, Jizhong, Jinhang Li, Leimeng Xu, Jianhai Li, Fengjuan Zhang, BoningHan, Qingsong Shan, and Haibo Zeng. 2018. “Room-Temperature TripleLigand Surface Engineering Synergistically Boosts Ink Stability,Recombination Dynamics, and Charge Injection toward EQE-11.6%Perovskite QLEDs.” Advanced Materials 30 (30): 1800764.
[33]Lu, Min, Xiaoyu Zhang, Yu Zhang, Jie Guo, Xinyu Shen, William W. Yu, andAndrey L. Rogach. 2018. “Simultaneous Strontium Doping and ChlorineSurface Passivation Improve Luminescence Intensity and Stability of CsPbI 3Nanocrystals Enabling Efficient Light‐Emitting Devices.” Advanced Materials30 (50): 1804691.
[34]Shen, Xinyu, Yu Zhang, Stephen V. Kershaw, Tianshu Li, Congcong Wang,22Xiaoyu Zhang, Wenyan Wang, et al. 2019. “Zn-Alloyed CsPbI3 Nanocrystalsfor Highly Efficient Perovskite Light-Emitting Devices.” Nano Letters 19 (3):1552–1559.
[35]Song, Jizhong, Tao Fang, Jianhai Li, Leimeng Xu, Fengjuan Zhang, BoningHan, Qingsong Shan, and Haibo Zeng. 2018. “Organic–Inorganic HybridPassivation Enables Perovskite QLEDs with an EQE of 16.48%.” AdvancedMaterials 30 (50): 1805409.
[36]Xiao, Xiangtian, Kai Wang, Taikang Ye, Rui Cai, Zhenwei Ren, Dan Wu,Xiangwei Qu, et al. 2020. “Enhanced Hole Injection Assisted by ElectricDipoles for Efficient Perovskite Light-Emitting Diodes.” CommunicationsMaterials 1 (81):1-8 .
[37]Li, Hanming, Hong Lin, Dan Ouyang, Canglang Yao, Can Li, Jiayun Sun,Yilong Song, et al. 2021. “Efficient and Stable Red Perovskite Light‐EmittingDiodes with Operational Stability >300 H.” Advanced Materials 33 (15):2008820.
[38]Yuan, Fang, Chenxin Ran, Lin Zhang, Hua Dong, Bo Jiao, Xun Hou, JingruiLi, and Zhaoxin Wu. 2020. “A Cocktail of Multiple Cations in Inorganic HalidePerovskite toward Efficient and Highly Stable Blue Light-Emitting Diodes.”ACS Energy Letters 5 (4): 1062–1069.
[39]Kim, Young-Hoon, Sungjin Kim, Arvin Kakekhani, Jinwoo Park, JaehyeokPark, Yong-Hee Lee, Hengxing Xu, et al. 2021. “Comprehensive DefectSuppression in Perovskite Nanocrystals for High-Efficiency Light-EmittingDiodes.” Nature Photonics 15 (2): 148–155.
[40]Zhu, Lin, Hui Cao, Chen Xue, Hao Zhang, Minchao Qin, Jie Wang, KaichuanWen, et al. 2021. “Unveiling the Additive-Assisted Oriented Growth ofPerovskite Crystallite for High Performance Light-Emitting Diodes.” NatureCommunications 12 (1):5081.
[41]Chiba, Takayuki, Yukihiro Hayashi, Hinako Ebe, Keigo Hoshi, Jun Sato,Shugo Sato, Yong-Jin Pu, Satoru Ohisa, and Junji Kido. 2018. “AnionExchange Red Perovskite Quantum Dots with Ammonium Iodine Salts forHighly Efficient Light-Emitting Devices.” Nature Photonics 12 (11): 681–687.
[42]Liu, Zhe, Weidong Qiu, Xiaomei Peng, Guanwei Sun, Xinyan Liu, DenghuiLiu, Zhenchao Li, et al. 2021. “Perovskite Light‐Emitting Diodes with EQEExceeding 28% through a Synergetic Dual‐Additive Strategy for Defect23Passivation and Nanostructure Regulation.” Advanced Materials 33 (43):2103268.
[43]Xu, Weidong, Qi Hu, Sai Bai, Chunxiong Bao, Yanfeng Miao, ZhongchengYuan, Tetiana Borzda, et al. 2019. “Rational Molecular Passivation for HighPerformance Perovskite Light-Emitting Diodes.” Nature Photonics 13 (6):418–424.
[44]Kumawat, Naresh K., Amrita Dey, Aravindh Kumar, Sreelekha P. Gopinathan,K. L. Narasimhan, and Dinesh Kabra. 2015. “Band Gap Tuning ofCH3NH3Pb(Br1–XClx)3 Hybrid Perovskite for Blue Electroluminescence.”ACS Applied Materials & Interfaces 7 (24): 13119–13124.
[45]Lin, Zhaoyang, Yuan Liu, Udayabagya Halim, Mengning Ding, Yuanyue Liu,Yiliu Wang, Chuancheng Jia, et al. 2018. “Solution-Processable 2DSemiconductors for High-Performance Large-Area Electronics.” Nature 562(7726): 254–258.
[46]Karlsson, Max, Ziyue Yi, Sebastian Reichert, Xiyu Luo, Weihua Lin, ZeyuZhang, Chunxiong Bao, et al. 2021. “Mixed Halide Perovskites for SpectrallyStable and High-Efficiency Blue Light-Emitting Diodes.” NatureCommunications 12 (1): 361.
[47]Wang, Ya‐Kun, Kamalpreet Singh, Jiao‐Yang Li, Yitong Dong, Xue‐Qi Wang,Joao M. Pina, You‐Jun Yu, et al. 2022. “In Situ Inorganic LigandReplenishment Enables Bandgap Stability in Mixed‐Halide PerovskiteQuantum Dot Solids.” Advanced Materials 34 (21): 2200854.
[48]Liu, Zhe, Weidong Qiu, Xiaomei Peng, Guanwei Sun, Xinyan Liu, DenghuiLiu, Zhenchao Li, et al. 2021. “Perovskite Light‐Emitting Diodes with EQEExceeding 28% through a Synergetic Dual‐Additive Strategy for DefectPassivation and Nanostructure Regulation.” Advanced Materials 33 (43):2103268.
[49]Liu, Yuan, Ziliang Li, Jian Xu, Yitong Dong, Bin Chen, So Min Park, DongxinMa, et al. 2022. “Wide-Bandgap Perovskite Quantum Dots in PerovskiteMatrix for Sky-Blue Light-Emitting Diodes.” Journal of the AmericanChemical Society 144 (9): 4009–4016.
[50]Liu, Yuan, Yitong Dong, Tong Zhu, Dongxin Ma, Andrew Proppe, Bin Chen,Chao Zheng, et al. 2021. “Bright and Stable Light-Emitting Diodes Based on24Perovskite Quantum Dots in Perovskite Matrix.” Journal of the AmericanChemical Society 143 (38): 15606–15615 Chapter2:
[1] Lee, Ya-Ju, Chia-Jung Lee, and Chun-Mao Cheng. 2010. “Enhancing theConversion Efficiency of Red Emission by Spin-Coating CdSe Quantum Dotson the Green Nanorod Light-Emitting Diode.” Optics Express 18 (S4): A554.
[2] Kistler, Stephan F, and Peter M Schweizer. 1997. Liquid Film Coating :Scientific Principles and Their Technological Implications. Editora: London ;New York: Chapman & Hall.
[3] Flory, François, and Angela Piegari. 2013. Optical Thin Films and Coatings :From Materials to Applications. Oxford... Etc: Woodhead Publishing Limited.,Cop.
[4] Luttge, Regina. 2017. Microfabrication for Industrial Applications. Norwich:William Andrew.
[5] Delikanli, Savas, Burak Guzelturk, Pedro L. Hernández-Martínez, Talha Erdem,Yusuf Kelestemur, Murat Olutas, Mehmet Zafer Akgul, and Hilmi V. Demir.2015. “Continuously Tunable Emission in Inverted Type-I CdS/CdSeCore/Crown Semiconductor Nanoplatelets.” Advanced Functional Materials 25(27): 4282–4289.
[6] Cho, Changsoon, Baodan Zhao, Gregory D. Tainter, Jung-Yong Lee, RichardH. Friend, Dawei Di, Felix Deschler, and Neil C. Greenham. 2020. “The Roleof Photon Recycling in Perovskite Light-Emitting Diodes.” NatureCommunications 11 (1): 14401.
[7] Melzer, Christian, Victor V. Krasnikov, and Georges Hadziioannou. 2003.“Charge Transport, Injection, and Photovoltaic Phenomena inOligo(Phenylenevinylene) Based Diodes.” Journal of Polymer Science Part B:Polymer Physics 41 (21): 2665–2673.
[8] Antos, Roman, Jaromir Pistora, Ivan Ohlidal, Kamil Postava, Jan Mistrik,Tomuo Yamaguchi, Stefan Visnovsky, and Masahiro Horie. 2005. “SpecularSpectroscopic Ellipsometry for the Critical Dimension Monitoring of GratingsFabricated on a Thick Transparent Plate.” Journal of Applied Physics 97 (5):053107.
[9] Gallagher, Sean R, and Emily A Wiley. 2012. Current Protocols EssentialLaboratory Techniques. Hoboken, N.J.: Wiley-Blackwell.
[10] Chen, Lan, Bin Li, Chunfeng Zhang, Xinyu Huang, Xiaoyong Wang, andMin Xiao. 2018. “Composition-Dependent Energy Splitting between Bright andDark Excitons in Lead Halide Perovskite Nanocrystals.” Nano Letters 18 (3):2074–2080.
[11] Xiao, Zhengguo, Ross A. Kerner, Nhu Tran, Lianfeng Zhao, Gregory D.Scholes, and Barry P. Rand. 2019. “Engineering Perovskite NanocrystalSurface Termination for Light-Emitting Diodes with External QuantumEfficiency Exceeding 15%.” Advanced Functional Materials 29 (11): 1807284.45
[12] Safa Kasap. 2013. Optoelectronics and Photonics : Principles and Practices.Boston: Pearson.
[13] Ludwig Reimer, and Rudolf Reichelt. 2010. Scanning Electron Microscopy :Physics of Image Formation and Microanalysis. Berlin ; London: Springer.
[14] Anjam Khursheed. 2011. Scanning Electron Microscope Optics andSpectrometers. New Jersey World Scientific.
[15] Om Johari. 1978. Scanning Electron Microscopy : An International Reviewof Advances in Instrumentation, Techniques, Theory and Physical Applicationsof the Scanning Electron Microscope. Amf O’hare, Ill: Scanning ElectronMicroscopy Inc.
[16] Spence, John C H. 2003. High-Resolution Electron Microscopy. Oxford ;New York: Oxford University Press.
[17] Hayat, M A. 1986. Basic Techniques for Transmission Electron Microscopy.Orlando: Academic Press.
[18] Ayache, Jeanne, Springerlink (Online Service, and Et Al. 2010. SamplePreparation Handbook for Transmission Electron Microscopy : Techniques.New York: Springer.
[19] Cohen, Samuel H, Mona T Bray, and Marcia L Lightbody. 1994. AtomicForce Microscopy/Scanning Tunneling Microscopy. New York: Plenum Press.
[20] Haugstad, Greg. 2012. Atomic Force Microscopy : Understanding BasicModes and Advanced Applications. Hoboken, N.J.: John Wiley & Sons. Chapter3:
[1] Lin, Kebin, Jun Xing, Li Na Quan, F. Pelayo García de Arquer, Xiwen Gong,Jianxun Lu, Liqiang Xie, et al. 2018. “Perovskite Light-Emitting Diodes withExternal Quantum Efficiency Exceeding 20 per Cent.” Nature 562 (7726):245–248.
[2] Cao, Yu, Nana Wang, He Tian, Jingshu Guo, Yingqiang Wei, Hong Chen,Yanfeng Miao, et al. 2018. “Perovskite Light-Emitting Diodes Based onSpontaneously Formed Submicrometre-Scale Structures.” Nature 562 (7726):249–253.
[3] Liu, Yang, Jieyuan Cui, Kai Du, He Tian, Zhuofei He, Qiaohui Zhou,Zhaoliang Yang, et al. 2019. “Efficient Blue Light-Emitting Diodes Based onQuantum-Confined Bromide Perovskite Nanostructures.” Nature Photonics 13(11): 760–764.
[4] Zhao, Xiaofei, and Zhi-Kuang Tan. 2019. “Large-Area Near-InfraredPerovskite Light-Emitting Diodes.” Nature Photonics 14 (4): 215–218.
[5] Shen, Yang, Li-Peng Cheng, Yan-Qing Li, Wei Li, Jing-De Chen, Shuit-TongLee, and Jian-Xin Tang. 2019. “Perovskite Light-Emitting Diodes: HighEfficiency Perovskite Light-Emitting Diodes with Synergetic OutcouplingEnhancement (Adv. Mater. 24/2019).” Advanced Materials 31 (24): 1970174.
[6] Yang, Jun-Nan, Yang Song, Ji-Song Yao, Kun-Hua Wang, Jing-Jing Wang,Bai-Sheng Zhu, Ming-Ming Yao, et al. 2020. “Potassium Bromide SurfacePassivation on CsPbI3-xBrx Nanocrystals for Efficient and Stable Pure RedPerovskite Light-Emitting Diodes.” Journal of the American Chemical Society142 (6): 2956–2967.60
[7] Ke, You, Nana Wang, Decheng Kong, Yu Cao, Yarong He, Lin Zhu, YumingWang, et al. 2018. “Defect Passivation for Red Perovskite Light-EmittingDiodes with Improved Brightness and Stability.” The Journal of PhysicalChemistry Letters 10 (3): 380–385.
[8] Miao, Yanfeng, You Ke, Nana Wang, Wei Zou, Mengmeng Xu, Yu Cao, YanSun, et al. 2019. “Stable and Bright Formamidinium-Based Perovskite LightEmitting Diodes with High Energy Conversion Efficiency.” NatureCommunications 10 (1):11567.
[9] Peng, Xuefeng, Xiaohui Yang, Detao Liu, Ting Zhang, Ye Yang, ChaochaoQin, Feng Wang, Li Chen, and Shibin Li. 2021. “Targeted Distribution ofPassivator for Polycrystalline Perovskite Light-Emitting Diodes with HighEfficiency.” ACS Energy Letters 6 (12): 4187–4194.
[10]Bai, Tianxin, Bin Yang, Junsheng Chen, Daoyuan Zheng, Zhe Tang, XiaochenWang, Yang Zhao, Ruifeng Lu, and Keli Han. 2021. “Efficient LuminescentHalide Quadruple‐Perovskite Nanocrystals via Trap‐Engineering for HighlySensitive Photodetectors.” Advanced Materials 33 (8): 2007215.
[11]Guo, Yuwei, Yongheng Jia, Nan Li, Mengyu Chen, Sujuan Hu, Chuan Liu, andNi Zhao. 2020. “Degradation Mechanism of Perovskite Light‐Emitting Diodes:An in Situ Investigation via Electroabsorption Spectroscopy and DeviceModelling.” Advanced Functional Materials 30 (19): 1910464.
[12]Berleb, Stefan, and Wolfgang Brütting. 2002. “Dispersive Electron Transportin Tris(8-Hydroxyquinoline) Aluminum (aLQ3) Probed by ImpedanceSpectroscopy.” Physical Review Letters 89 (28): 286601.
[13]Wang, Qing, Jacques-E. Moser, and Michael Grätzel. 2005. “ElectrochemicalImpedance Spectroscopic Analysis of Dye-Sensitized Solar Cells.” TheJournal of Physical Chemistry B 109 (31): 14945–14953.
[14]Garcia-Belmonte, Germà, Antonio Guerrero, and Juan Bisquert. 2013.“Elucidating Operating Modes of Bulk-Heterojunction Solar Cells fromImpedance Spectroscopy Analysis.” The Journal of Physical Chemistry Letters4 (6): 877–86.
[15]Shit, Arnab, Shreyam Chatterjee, and Arun K. Nandi. 2014. “Dye-SensitizedSolar Cell from Polyaniline–ZnS Nanotubes and Its Characterization throughImpedance Spectroscopy.” Phys. Chem. Chem. Phys. 16 (37): 20079–20088.
[16]Góes, Márcio Sousa, Ednan Joanni, Elaine C. Muniz, Raluca Savu, Thomas R.Habeck, Paulo R. Bueno, and Francisco Fabregat-Santiago. 2012. “ImpedanceSpectroscopy Analysis of the Effect of TiO2 Blocking Layers on the Efficiencyof Dye Sensitized Solar Cells.” The Journal of Physical Chemistry C 116 (23):12415–12421.
[17]Pauporté, Th., and C. Magne. 2014. “Impedance Spectroscopy Study of N719-Sensitized ZnO-Based Solar Cells.” Thin Solid Films 5 (60) : 20–26.
[18]Bertoluzzi, Luca, Pablo P. Boix, Ivan Mora-Sero, and Juan Bisquert. 2014.“Theory of Impedance Spectroscopy of Ambipolar Solar Cells with TrapMediated Recombination.” The Journal of Physical Chemistry C 118 (30):16574–80.
[19]Chen, Song, Weiran Cao, Taili Liu, Sai-Wing Tsang, Yixing Yang, XiaolinYan, and Lei Qian. 2019. “On the Degradation Mechanisms of Quantum-DotLight-Emitting Diodes.” Nature Communications 10 (1): 8749.
[20]Zhang, Le, Hajime Nakanotani, and Chihaya Adachi. 2013. “CapacitanceVoltage Characteristics of a 4,4′-Bis[(N-Carbazole)Styryl]Biphenyl BasedOrganic Light-Emitting Diode: Implications for Characteristic Times and TheirDistribution.” Applied Physics Letters 103 (9): 093301.
[21]Moon, Chang‐Ki, Ja‐Yun Choi, Yoonjay Han, Chang‐Heon Lee, and Jang‐JooKim. 2020. “Impacts of Minority Charge Carrier Injection on the NegativeCapacitance, Steady‐State Current, and Transient Current of a Single‐LayerOrganic Semiconductor Device.” Advanced Electronic Materials 6 (12):2000622.
[22]Cai, Rui, Xiangwei Qu, Haochen Liu, Hongcheng Yang, Kai Wang, and XiaoWei Sun. 2019. “Perovskite Light-Emitting Diodes Based on FAPb1− x Sn x Br3Nanocrystals Synthesized at Room Temperature.” IEEE Transactions onNanotechnology 18: 1050–56. Chapter4:
[1] Stoumpos, Constantinos C., and Mercouri G. Kanatzidis. 2016. “HalidePerovskites: Poor Man’s High-Performance Semiconductors.” AdvancedMaterials 28 (28): 5778–93.
[2] Adinolfi, Valerio, Wei Peng, Grant Walters, Osman M. Bakr, and Edward H.Sargent. 2017. “The Electrical and Optical Properties of Organometal HalidePerovskites Relevant to Optoelectronic Performance.” Advanced Materials 30(1): 1700764.
[3] Veldhuis, Sjoerd A., Pablo P. Boix, Natalia Yantara, Mingjie Li, Tze ChienSum, Nripan Mathews, and Subodh G. Mhaisalkar. 2016. “Perovskite90Materials for Light-Emitting Diodes and Lasers.” Advanced Materials 28 (32):6804–6834.
[4] Avigad, Eytan, and Lioz Etgar. 2018. “Studying the Effect of MoO3 in HoleConductor-Free Perovskite Solar Cells.” ACS Energy Letters 3 (9): 2240–45.
[5] Han, Dengbao, Muhammad Imran, Mengjiao Zhang, Shuai Chang, Xian-gangWu, Xin Zhang, Jialun Tang, et al. 2018. “Efficient Light-Emitting DiodesBased on in Situ Fabricated FAPbBr3 Nanocrystals: The Enhancing Role ofthe Ligand-Assisted Reprecipitation Process.” ACS Nano 12 (8): 8808–8816.
[6] Song, Jizhong, Tao Fang, Jianhai Li, Leimeng Xu, Fengjuan Zhang, BoningHan, Qingsong Shan, and Haibo Zeng. 2018. “Organic–Inorganic HybridPassivation Enables Perovskite QLEDs with an EQE of 16.48%.” AdvancedMaterials 30 (50): 1805409.
[7] Zhang, Xiaoli, He Liu, Weigao Wang, Jinbao Zhang, Bing Xu, Ke Lin Karen,Yuanjin Zheng, et al. 2017. “Hybrid Perovskite Light-Emitting Diodes Basedon Perovskite Nanocrystals with Organic-Inorganic Mixed Cations.” AdvancedMaterials 29 (18): 1606405.
[8] Deng, Wei, Xiuzhen Xu, Xiujuan Zhang, Yedong Zhang, Xiangcheng Jin,Liang Wang, Shuit-Tong Lee, and Jiansheng Jie. 2016. “Organometal HalidePerovskite Quantum Dot Light-Emitting Diodes.” Advanced FunctionalMaterials 26 (26): 4797–4802.
[9] Xu, Bing, Weigao Wang, Xiaoli Zhang, Wanyu Cao, Dan Wu, Sheng Liu,Haitao Dai, Shuming Chen, Kai Wang, and Xiaowei Sun. 2017. “Bright andEfficient Light-Emitting Diodes Based on MA/Cs Double Cation PerovskiteNanocrystals.” Journal of Materials Chemistry C 5 (25): 6123–6128.
[10]Han, Tae‐Hee, Shaun Tan, Jingjing Xue, Lei Meng, Jin‐Wook Lee, and YangYang. 2019. “Interface and Defect Engineering for Metal Halide PerovskiteOptoelectronic Devices.” Advanced Materials 31 (47): 1803515.
[11]Lin, Kebin, Jun Xing, Li Na Quan, F. Pelayo García de Arquer, Xiwen Gong,Jianxun Lu, Liqiang Xie, et al. 2018. “Perovskite Light-Emitting Diodes withExternal Quantum Efficiency Exceeding 20 per Cent.” Nature 562 (7726):245–248.
[12]Cao, Yu, Nana Wang, He Tian, Jingshu Guo, Yingqiang Wei, Hong Chen,Yanfeng Miao, et al. 2018. “Perovskite Light-Emitting Diodes Based on91Spontaneously Formed Submicrometre-Scale Structures.” Nature 562 (7726):249–253.
[13]Zhao, Baodan, Sai Bai, Vincent Kim, Robin Lamboll, Ravichandran Shivanna,Florian Auras, Johannes M. Richter, et al. 2018. “High-Efficiency Perovskite–Polymer Bulk Heterostructure Light-Emitting Diodes.” Nature Photonics 12(12): 783–789.
[14]Zhang, Liuqi, Xiaolei Yang, Qi Jiang, Pengyang Wang, Zhigang Yin,Xingwang Zhang, Hairen Tan, et al. 2017. “Ultra-Bright and Highly EfficientInorganic Based Perovskite Light-Emitting Diodes.” Nature Communications8 (1): 15640.
[15]Okachi, Takayuki, Takashi Nagase, Takashi Kobayashi, and Hiroyoshi Naito.2008. “Influence of Injection Barrier on the Determination of Charge-CarrierMobility in Organic Light-Emitting Diodes by Impedance Spectroscopy.” ThinSolid Films 517 (4): 1331–34.
[16]Wang, Nana, Lu Cheng, Rui Ge, Shuting Zhang, Yanfeng Miao, Wei Zou,Chang Yi, et al. 2016. “Perovskite Light-Emitting Diodes Based on SolutionProcessed Self-Organized Multiple Quantum Wells.” Nature Photonics 10 (11):699–704.
[17]Dai, Xingliang, Zhenxing Zhang, Yizheng Jin, Yuan Niu, Hujia Cao, XiaoyongLiang, Liwei Chen, Jianpu Wang, and Xiaogang Peng. 2014. “SolutionProcessed, High-Performance Light-Emitting Diodes Based on Quantum Dots.”Nature 515 (7525): 96–99.
[18]Cho, Himchan, Joo Sung Kim, Christoph Wolf, Young-Hoon Kim, HyungJoong Yun, Su-Hun Jeong, Aditya Sadhanala, et al. 2018. “High-EfficiencyPolycrystalline Perovskite Light-Emitting Diodes Based on Mixed Cations.”ACS Nano 12 (3): 2883–2892.
[19]Zou, Yatao., Zhongcheng Yuan, Sai Bai, Feng Gao, and Baoquan Sun. 2019.“Recent Progress toward Perovskite Light-Emitting Diodes with EnhancedSpectral and Operational Stability.” Materials Today Nano 5 (1): 100028.
[20]Shan, Qingsong, Jizhong Song, Yousheng Zou, Jianhai Li, Leimeng Xu, JieXue, Yuhui Dong, Boning Han, Jiawei Chen, and Haibo Zeng. 2017. “HighPerformance Metal Halide Perovskite Light-Emitting Diode: From MaterialDesign to Device Optimization.” Small 13 (45): 1701770.92
[21]Gangishetty, Mahesh K., Shaocong Hou, Qimin Quan, and Daniel N. Congreve.2018. “Blue Perovskite LEDs: Reducing Architecture Limitations for EfficientBlue Perovskite Light-Emitting Diodes” Advanced Materials 30 (20): 1870137.
[22]Chiba, Takayuki, Keigo Hoshi, Yong-Jin Pu, Yuya Takeda, Yukihiro Hayashi,Satoru Ohisa, So Kawata, and Junji Kido. 2017. “High-Efficiency PerovskiteQuantum-Dot Light-Emitting Devices by Effective Washing Process andInterfacial Energy Level Alignment.” ACS Applied Materials & Interfaces 9(21): 18054–18060.
[23]Peng, Xue-Feng, Xiao-Yan Wu, Xia-Xia Ji, Jie Ren, Qi Wang, Guo-Qing Li,and Xiao-Hui Yang. 2017. “Modified Conducting Polymer Hole InjectionLayer for High-Efficiency Perovskite Light-Emitting Devices: Enhanced HoleInjection and Reduced Luminescence Quenching.” The Journal of PhysicalChemistry Letters 8 (19): 4691–4697.
[24]Zeng, Junpeng, Cuifang Meng, Xiaoming Li, Ye Wu, Shuting Liu, Hai Zhou,Hao Wang, and Haibo Zeng. 2019. “Interfacial‐Tunneling‐Effect‐EnhancedCsPbBr 3 Photodetectors Featuring High Detectivity and Stability.” AdvancedFunctional Materials 29 (51): 1904461.
[25]Book, K., V. R. Nikitenko, H. Bässler, and A. Elschner. 2001. “OpticalDetection of Charge Carriers in Multilayer Organic Light-Emitting Diodes:Experiment and Theory.” Journal of Applied Physics 89 (5): 2690–2698.
[26]Thomas, Joseph Palathinkal, and Kam Tong Leung. 2014. “Defect-MinimizedPEDOT:PSS/Planar-Si Solar Cell with Very High Efficiency.” AdvancedFunctional Materials 24 (31): 4978–4985.
[27]Sharma, Bhupendra K., Neeraj Khare, and Shahzada Ahmad. 2009. “AZnO/PEDOT:PSS Based Inorganic/Organic Hetrojunction.” Solid StateCommunications 149 (19-20): 771–774.
[28]Caruge, Jean-Michel, Jonathan E. Halpert, Vladimir Bulović, and Moungi G.Bawendi. 2006. “NiO as an Inorganic Hole-Transporting Layer in QuantumDot Light-Emitting Devices.” Nano Letters 6 (12): 2991–2994.
[29]Chen, Song, Weiran Cao, Taili Liu, Sai-Wing Tsang, Yixing Yang, XiaolinYan, and Lei Qian. 2019. “On the Degradation Mechanisms of Quantum-DotLight-Emitting Diodes.” Nature Communications 10 (1): 8749.
[30]Zhang, Le, Hajime Nakanotani, and Chihaya Adachi. 2013. “CapacitanceVoltage Characteristics of a 4,4′-Bis[(N-Carbazole)Styryl]Biphenyl Based93Organic Light-Emitting Diode: Implications for Characteristic Times and TheirDistribution.” Applied Physics Letters 103 (9): 093301.
[31]Cai, Rui, Xiangwei Qu, Haochen Liu, Hongcheng Yang, Kai Wang, and XiaoWei Sun. 2019. “Perovskite Light-Emitting Diodes Based on FAPb1− x Sn x Br3Nanocrystals Synthesized at Room Temperature.” IEEE Transactions onNanotechnology 18 (1): 1050–1056. Chapter5:
[1] Cao, Yu, Nana Wang, He Tian, Jingshu Guo, Yingqiang Wei, Hong Chen,Yanfeng Miao, et al. 2018. “Perovskite Light-Emitting Diodes Based onSpontaneously Formed Submicrometre-Scale Structures.” Nature 562 (7726):249–253.
[2] Yoo, Jason J., Gabkyung Seo, Matthew R. Chua, Tae Gwan Park, Yongli Lu,Fabian Rotermund, Young-Ki Kim, et al. 2021. “Efficient Perovskite SolarCells via Improved Carrier Management.” Nature 590 (7847): 587–593.
[3] Xu, Weidong, Qi Hu, Sai Bai, Chunxiong Bao, Yanfeng Miao, ZhongchengYuan, Tetiana Borzda, et al. 2019. “Rational Molecular Passivation for HighPerformance Perovskite Light-Emitting Diodes.” Nature Photonics 13 (6):418–424.
[4] Zhao, Yixin, and Kai Zhu. 2016. “Organic–Inorganic Hybrid Lead HalidePerovskites for Optoelectronic and Electronic Applications.” Chemical SocietyReviews 45 (3): 655–689.
[5] Song, Jizhong, Leimeng Xu, Jianhai Li, Jie Xue, Yuhui Dong, Xiaoming Li,and Haibo Zeng. 2016. “Monolayer and Few-Layer All-Inorganic Perovskites121as a New Family of Two-Dimensional Semiconductors for PrintableOptoelectronic Devices.” Advanced Materials 28 (24): 4861–4869.
[6] Zhang, Fei, Haipeng Lu, Jinhui Tong, Joseph J. Berry, Matthew Beard, and KaiZhu. 2020. “Advances in Two-Dimensional Organic-Inorganic HybridPerovskites.” Energy & Environmental Science 13 (4): 1154–1186.
[7] Miao, Jianli, and Fujun Zhang. 2019. “Recent Progress on Highly SensitivePerovskite Photodetectors.” Journal of Materials Chemistry C 7 (7): 1741–1791.
[8] Jung, Eui Hyuk, Nam Joong Jeon, Eun Young Park, Chan Su Moon, Tae JooShin, Tae-Youl Yang, Jun Hong Noh, and Jangwon Seo. 2019. “Efficient,Stable and Scalable Perovskite Solar Cells Using Poly(3-Hexylthiophene).”Nature 567 (7749): 511–515.
[9] Leijtens, Tomas, Giles E. Eperon, Nakita K. Noel, Severin N. Habisreutinger,Annamaria Petrozza, and Henry J. Snaith. 2015. “Stability of Metal HalidePerovskite Solar Cells.” Advanced Energy Materials 5 (20): 1500963.
[10]Tan, Zhi-Kuang, Reza Saberi Moghaddam, May Ling Lai, Pablo Docampo,Ruben Higler, Felix Deschler, Michael Price, et al. 2014. “Bright LightEmitting Diodes Based on Organometal Halide Perovskite.” NatureNanotechnology 9 (9): 687–692.
[11]Chiba, Takayuki, Yukihiro Hayashi, Hinako Ebe, Keigo Hoshi, Jun Sato,Shugo Sato, Yong-Jin Pu, Satoru Ohisa, and Junji Kido. 2018. “AnionExchange Red Perovskite Quantum Dots with Ammonium Iodine Salts forHighly Efficient Light-Emitting Devices.” Nature Photonics 12 (11): 681–687.
[12]Zhao, Baodan, Sai Bai, Vincent Kim, Robin Lamboll, Ravichandran Shivanna,Florian Auras, Johannes M. Richter, et al. 2018. “High-Efficiency Perovskite–Polymer Bulk Heterostructure Light-Emitting Diodes.” Nature Photonics 12(12): 783–789.
[13]Lin, Kebin, Jun Xing, Li Na Quan, F. Pelayo García de Arquer, Xiwen Gong,Jianxun Lu, Liqiang Xie, et al. 2018. “Perovskite Light-Emitting Diodes withExternal Quantum Efficiency Exceeding 20 per Cent.” Nature 562 (7726):245–248.
[14]Wen, Zhuoqi, Fengxian Xie, and Wallace. C. H. Choy. 2021. “Stability ofElectroluminescent Perovskite Quantum Dots Light‐Emitting Diode.” NanoSelect 3 (3): 505–530.122
[15]Lee, Seungae, Yun Ki Kim, and Jyongsik Jang. 2016. “Long-Term StabilityImprovement of Light-Emitting Diode Using Highly Transparent GrapheneOxide Paste.” Nanoscale 8 (40): 17551–17559.
[16]Wang, Pengfei, Le Qin, Binze Zhou, Mengjia Liu, Shicai Geng, Min Wang,Zhiyong Lei, Yanwei Wen, and Rong Chen. 2022. “Boosted Efficiency andLifetime of Perovskite Quantum Dots Light-Emitting Diode viaNiOx/PEDOT:PSS Dual Hole Injection Layers.” Applied Physics Letters 120(3): 033502.
[17]Xiao, Peng, Yicong Yu, Junyang Cheng, Yonglong Chen, Shengjin Yuan,Jianwen Chen, Jian Yuan, and Baiquan Liu. 2021. “Advances in PerovskiteLight-Emitting Diodes Possessing Improved Lifetime.” Nanomaterials 11 (1):103.
[18]Dong, Qi, Lei Lei, Juliana Mendes, and Franky So. 2020. “OperationalStability of Perovskite Light Emitting Diodes.” Journal of Physics: Materials3 (1): 012002.
[19]Ren, Zhenwei, Kai Wang, Xiao Wei Sun, and Wallace C. H. Choy. 2021.“Strategies toward Efficient Blue Perovskite Light‐Emitting Diodes.”Advanced Functional Materials 31 (30): 2100516.
[20]Zou, Yatao, Muyang Ban, Yingguo Yang, Sai Bai, Chen Wu, Yujie Han, TianWu, et al. 2018. “Boosting Perovskite Light-Emitting Diode Performance viaTailoring Interfacial Contact.” ACS Applied Materials & Interfaces 10 (28):24320–24326.
[21]Lee, Taesoo, Byong Jae Kim, Hyunkoo Lee, Donghyo Hahm, Wan Ki Bae,Jaehoon Lim, and Jeonghun Kwak. 2021. “Bright and Stable Quantum DotLight‐Emitting Diodes.” Advanced Materials 34 (4): 2106276.
[22]Lee, Sangwon, Youngjin Kim, and Jiwan Kim. 2021. “Solution-Processed NiOas a Hole Injection Layer for Stable Quantum Dot Light-Emitting Diodes.”Applied Sciences 11 (10): 4422.
[23]Cai, Xinyi, and Shi-Jian Su. 2018. “Marching toward Highly Efficient, PureBlue, and Stable Thermally Activated Delayed Fluorescent Organic LightEmitting Diodes.” Advanced Functional Materials 28 (43): 1802558.
[24]Qin, Wei, Zhiyong Yang, Yibin Jiang, Jacky W. Y. Lam, Guodong Liang, HoiSing Kwok, and Ben Zhong Tang. 2015. “Construction of Efficient Deep BlueAggregation-Induced Emission Luminogen from Triphenylethene for123Nondoped Organic Light-Emitting Diodes.” Chemistry of Materials 27 (11):3892–3901.
[25]Lee, Jonghee, Jeong-Ik Lee, Jun Yeob Lee, and Hye Yong Chu. 2009. “StableEfficiency Roll-off in Blue Phosphorescent Organic Light-Emitting Diodes byHost Layer Engineering.” Organic Electronics 10 (8): 1529–1533.
[26]Li, Hanming, Hong Lin, Dan Ouyang, Canglang Yao, Can Li, Jiayun Sun,Yilong Song, et al. 2021. “Efficient and Stable Red Perovskite Light‐EmittingDiodes with Operational Stability >300 H.” Advanced Materials 33 (15):2008820.
[27]Lin, Hong. 2019. “Light-Emitting Diodes Based on Perovskite Thin Films andNanocrystals.” PhD, The University of Hong Kong (Pokfulam, Hong Kong).
[28]Sun, Jian-Kun, Sheng Huang, Xiao-Zhi Liu, Quan Xu, Qing-Hua Zhang, WenJie Jiang, Ding-Jiang Xue, et al. 2018. “Polar Solvent Induced LatticeDistortion of Cubic CsPbI3 Nanocubes and Hierarchical Self-Assembly intoOrthorhombic Single-Crystalline Nanowires.” Journal of the AmericanChemical Society 140 (37): 11705–11715.
[29]Liu, Feng, Yaohong Zhang, Chao Ding, Syuusuke Kobayashi, Takuya Izuishi,Naoki Nakazawa, Taro Toyoda, et al. 2017. “Highly Luminescent Phase-StableCsPbI3 Perovskite Quantum Dots Achieving near 100% AbsolutePhotoluminescence Quantum Yield.” ACS Nano 11 (10): 10373–10383.
[30]Protesescu, Loredana, Sergii Yakunin, Maryna I. Bodnarchuk, Franziska Krieg,Riccarda Caputo, Christopher H. Hendon, Ruo Xi Yang, Aron Walsh, andMaksym V. Kovalenko. 2015. “Nanocrystals of Cesium Lead HalidePerovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic MaterialsShowing Bright Emission with Wide Color Gamut.” Nano Letters 15 (6):3692–3696.
[31]Hoffman, Jacob B., A. Lennart Schleper, and Prashant V. Kamat. 2016.“Transformation of Sintered CsPbBr3 Nanocrystals to Cubic CsPbI3 andGradient CsPbBrxI3–x through Halide Exchange.” Journal of the AmericanChemical Society 138 (27): 8603–8611.
[32]Karpov, Yevhen, Tim Erdmann, Ivan Raguzin, Mahmoud Al-Hussein, MarcusBinner, Uwe Lappan, Manfred Stamm, et al. 2016. “High Conductivity inMolecularly P-Doped Diketopyrrolopyrrole-Based Polymer: The Impact of a124High Dopant Strength and Good Structural Order.” Advanced Materials 28(28): 6003–6010.
[33]Kang, Keehoon, Shun Watanabe, Katharina Broch, Alessandro Sepe, AdamBrown, Iyad Nasrallah, Mark Nikolka, et al. 2016. “2D Coherent ChargeTransport in Highly Ordered Conducting Polymers Doped by SolidState Diffusion.” Nature Materials 15 (8): 896–902.
[34]Zhang, Fengyu, and Antoine Kahn. 2017. “Investigation of the High ElectronAffinity Molecular Dopant F6‐TCNNQ for Hole‐Transport Materials.”Advanced Functional Materials 28 (1): 1703780.
[35]Wang, Qungui, Keli Wang, Cheng Yan, Xiankan Zeng, Xuehai Fu, JingjingCao, Shiyu Yang, Wen Li, Xiangrong Chen, and Weiqing Yang. 2022.“Molecularly Understanding and Regulating Carrier Injection Behaviour ofETL/Perovskite towards High Performance PeLEDs.” Chemical EngineeringJournal 456 (1): 141077.
[36]Chance, Ronald, Prock, A., and Silbey, R. J. 1978. “Molecular fluorescenceand energy transfer near interfaces,” Advances in Chemical Physics.37: 1–65.
[37]Xiang, Chaoyu, Wonhoe Koo, Franky So, Hisahiro Sasabe, and Junji Kido.2013. “A Systematic Study on Efficiency Enhancements in PhosphorescentGreen, Red and Blue Microcavity Organic Light Emitting Devices.” Light:Science & Applications 2 (6): 74–74.
[38]Dodabalapur, A., L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, andJulia M. Phillips. 1996. “Physics and Applications of Organic MicrocavityLight Emitting Diodes.” Journal of Applied Physics 80 (12): 6954–6964.
[39]Schubert, E. F., N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho,and G. J. Zydzik. 1994. “Highly Efficient Light-Emitting Diodes withMicrocavities.” Science 265 (5174): 943–945

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/535673
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
Xiao XT. Analyses and optimizations of interface layers for perovskite light-emitting diodes[D]. 香港. 香港大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11750030-肖翔天-电子与电气工程(13137KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[肖翔天]的文章
百度学术
百度学术中相似的文章
[肖翔天]的文章
必应学术
必应学术中相似的文章
[肖翔天]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。