[1] Shao Q, Chen F C, Wang Y, et al. Design of Modified 4 x 6 Filtering Butler Matrix Based on All-Resonator Structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2019(67-9).
[2] Xiu Y Z, Chen J X, Xue Q, et al. Dual-Band Bandpass Filters Using Stub-Loaded Resonators[J]. IEEE Microwave & Wireless Components Letters, 2007, 17(8):583-585.
[3] Hong J S, Lancaster M J. Theory and experiment of novel microstrip slow-wave open-loop resonator filters[J]. IEEE Transactions on Microwave Theory & Techniques, 2002, 45(12):2358-2365.
[4] Sheng S, Lei Z. Compact dual-band microstrip bandpass filter without external feeds[J]. IEEE Microwave & Wireless Components Letters, 2005, 15(10):644-646.
[5] Dong Y D, Yang T, Itoh T. Substrate Integrated Waveguide Loaded by Complementary Split-Ring Resonators and Its Applications to Miniaturized Waveguide Filters[J]. IEEE Transactions on Microwave Theory & Techniques, 2009, 57(9):2211-2223.
[6] Chen X P, Wu K. Substrate Integrated Waveguide Cross-Coupled Filter With Negative Coupling Structure[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(1):142-149.
[7] Chin, Kuo-Sheng, Chang, et al. LTCC Multilayered Substrate-Integrated Waveguide Filter With Enhanced Frequency Selectivity for System-in-Package Applications[J]. IEEE Transactions on Components, Packaging & Manufacturing Technology, 2014.
[8] Shuang L, Jiang H, Xuan Z, et al. Micromachined WR-1.0 waveguide band-pass filter[C]// 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2016.
[9] Kirilenko A, Rud L, Tkachenko V, et al. Evanescent-mode ridged waveguide bandpass filters with improved performance[J]. IEEE Transactions on Microwave Theory & Techniques, 2002, 50(5):1324-1327.
[10] Wu Q, Zhu F, Yang Y, et al. An Effective Approach to Suppressing the Spurious Mode in Rectangular Waveguide Filters[J]. IEEE microwave and wireless components letters, 2019, 29(11):703-705.
[11] Leong K M K H, Hennig K, Zhang C, et al. WR1.5 Silicon Micromachined Waveguide Components and Active Circuit Integration Methodology[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(4):998-1005.
[12] Lealsevillano C A, Reck T J, Jungkubiak C, et al. Silicon Micromachined Canonical \hboxE-Plane and \hboxH-Plane Bandpass Filters at the Terahertz Band[J]. IEEE Microwave & Wireless Components Letters, 2013, 23(6):288-290.
[13] Zheng Z, Hu J, Liu S, et al. WR-1.5 band waveguide bandpass dual-mode filter on silicon micromachining technique[C]. IEEE International Conference on Communication Problem-Solving. IEEE, 2016:112-114.
[14] Hu J, Liu S, Zhang Y, et al. Micromachined terahertz waveguide band-pass filters[C]. IEEE/MTT-S International Microwave Symposium-ims. IEEE, 2017.
[15] Yang H, Dhayalan Y, Shang X, et al. WR-3 Waveguide Bandpass Filters Fabricated Using High Precision CNC Machining and SU-8 Photoresist Technology[J]. IEEE Transactions on Terahertz Science & Technology, 2018, 8(1):100-107.
[16] Chen Q, Shang X, Tian Y, et al. SU-8 micromachined WR-3 band waveguide bandpass filter with low insertion loss[J]. Electronics Letters, 2013, 49(7):480-481.
[17] Shang X, Tian Y, Lancaster M J, et al. A SU8 Micromachined WR-1.5 Band Waveguide Filter[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(6):300-302.
[18] Ding J Q, Shi S C, Zhou K, et al. Analysis of 220-GHz Low-Loss Quasi-Elliptic Waveguide Bandpass Filter[J]. IEEE Microwave & Wireless Components Letters, 2017, 27(7):648-650.
[19] Zhuang J X, Hong W, Hao Z C. Design and analysis of a terahertz bandpass filter[C]. Wireless Symposium. IEEE, 2015.
[20] Ding J Q, Shi S C, Zhou K, et al. WR-3 Band Quasi-Elliptical Waveguide Filters Using Higher Order Mode Resonances[J]. IEEE Transactions on Terahertz Science & Technology, 2017, PP(99):1-8.
[21] Zhang N, Song R, Hu M, et al. A Low-Loss Design of Bandpass Filter at the Terahertz Band[J]. IEEE Microwave & Wireless Components Letters, PP(99):1-3.
[22] Guo C, Shang X, Li J, et al. A lightweight 3-D printed X-band bandpass filter based on spherical dual-mode resonators[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(8): 568-570.
[23] Li J, Guo C, Mao L, et al. Monolithically 3-D Printed Hemispherical Resonator Waveguide Filters With Improved Out-of-Band Rejections[J]. IEEE Access, 2018, 6: 57030-57048.
[24] Hong J S, Lancaster M J. Microstrip filters for RF/microwave applications[M]. New York: (2001, Wiley)
[25] Richard J. C, Chandra M. Microwave Filters for Communication Systems, Fundamentals, Design, and Applications (2018, Wiley)
[26] CST Microwave Studio Germany Help Book, CST GmbH 2019.
[27] R. M. Kurzrok, General three-resonator filters in waveguide, IEEE Trans. Microw. Theory Techn., vol. 14, no. 1, pp. 46–47, Jan. 1966.
[28] A. E. Atia and A. E. Williams, Narrow-bandpass waveguide filters, IEEE Trans. Microw. Theory Techn., vol. 20, no. 4, pp. 258–265, Apr. 1972
[29] Carceller C, Soto P, Boria V, et al. Capacitive obstacle realizing multiple transmission zeros for in-line rectangular waveguide filters[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(10): 795-797.
[30] Carceller C, Soto P, Boria V, et al. New folded configuration of rectangular waveguide filters with asymmetrical transmission zeros[C]. 2014 44th European Microwave Conference. IEEE, 2014: 183-186.
[31] Meyler J, Garb K, Kastner R. Waveguide E-plane folded cross-coupled filters[C]. 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013). IEEE, 2013: 1-5.
[32] Amari S, Bornemann J. CIET-analysis and design of folded asymmetric H-plane waveguide filters with source-load coupling[C]. 2000 30th European Microwave Conference. IEEE, 2000: 1-4.
[33] Glubokov O, Zhao X, J Campion, et al. Micromachined Filters at 450 GHz With 1% Fractional Bandwidth and Unloaded Q over 700[J]. IEEE Transactions on Terahertz Science and Technology, 2018:1-1.
[34] O. A. Peverini et al., Integration of an H -Plane Bend, a Twist, and a Filter in Ku/K-Band Through Additive Manufacturing, in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2210-2219, May 2018.
[35] Y. Zhang et al., A 3-D Printed Ka-band Twisted Waveguide Filter with Filtering and Polarization Rotation, 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019, pp. 1701-1702.
[36] M. Rezaee and A. U. Zaman, Groove Gap Waveguide Filter Based on Horizontally Polarized Resonators for V-Band Applications, IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 2601-2609, July 2020.
[37] H. Zhang and Y. Liu, A V-band SIW filter with transmission zero based on high-order mode coupling, 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 2017, pp. 1-2.
[38] B. Ke, H. Chiu, J. S. Fu and Q. Xue, A V-band low insertion loss GaAs bandpass chip filter using CMRC technology, Asia-Pacific Microwave Conference 2011, 2011, pp. 53-56.
[39] R. E. Amaya, A. Momciu and I. Haroun, High-Performance, Compact Quasi-Elliptic Band Pass Filters for V-Band High Data Rate Radios, in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 3, pp. 411-416, March 2013.
[40] R. Bairavasubramanian and J. Papapolymerou, Development of V-band Integrated Front-Ends on Liquid Crystal Polymer (LCP) Technology, in IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 134-137.
[41] Guo C, Shang X, Lancaster M J, et al. A 3-D printed lightweight X-band waveguide filter based on spherical resonators[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(7): 442-444.
[42] Rohrdantz B, Rave C, Jacob A F. 3D-printed low-cost, low-loss microwave components up to 40 GHz[C]. 2016 IEEE MTT-S International Microwave Symposium (IMS). IEEE, 2016: 1-3.
[43] Chan K Y, Ramer R, Sorrentino R. Low-Cost Ku-Band Waveguide Devices Using 3-D Printing and Liquid Metal Filling[J]. IEEE Transactions on Microwave Theory and Techniques, 2018 (99): 1-9.
[44] Guo C, Li J, Xu J, et al. An X-band lightweight 3-D printed slotted circular waveguide dual-mode bandpass filter[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017: 2645-2646.
[45] J.-S. Hong and M. J. Lancaster, Microstrip triangular patch resonator filters. IEEE MTT-S Dig. (1), 2000, 331−334.
[46] M. Cuhaci, and D. S. James, Radiation from triangular and circular resonators in microstrip, IEEE MTT-S Digest 1977, 438–441.
[47] J.-S. Hong, and S. Li, Dual-mode microstrip triangular patch resonators and filters, In 2003 IEEE MTT-S International Microwave Symposium Digest, 1901–1904.
[48] J.-S. Hong, and S. Li, Theory and experiment of dual-mode microstrip triangular patch resonators and filters, IEEE Trans. Microwave Theory Techniques, 2004, 1237–1243.
[49] Moran-Lopez A, Corcoles J, Ruiz-Cruz J A, et al. Dual-mode filters in equilateral triangular waveguides with wide spurious-free response[C]. 2017 IEEE/MTT-S International Microwave Symposium - IMS 2017. IEEE, 2017.
修改评论