题名 | Multilingual Sentence Transformer as A Multilingual Word Aligner |
作者 | |
通讯作者 | Yun Chen |
共同第一作者 | Weikang Wang; Guanhua Chen |
发表日期 | 2022-12-07
|
会议名称 | Conference on Empirical Methods in Natural Language Processing (EMNLP)
|
会议录名称 | |
页码 | 2952–2963
|
会议日期 | 2022-12-7
|
会议地点 | Abu Dhabi, United Arab Emirates
|
摘要 | Multilingual pretrained language models (mPLMs) have shown their effectiveness in multilingual word alignment induction. However, these methods usually start from mBERT or XLM-R. In this paper, we investigate whether multilingual sentence Transformer LaBSE is a strong multilingual word aligner. This idea is non-trivial as LaBSE is trained to learn language-agnostic sentence-level embeddings, while the alignment extraction task requires the more fine-grained word-level embeddings to be language-agnostic. We demonstrate that the vanilla LaBSE outperforms other mPLMs currently used in the alignment task, and then propose to finetune LaBSE on parallel corpus for further improvement. Experiment results on seven language pairs show that our best aligner outperforms previous state-of-theart models of all varieties. In addition, our aligner supports different language pairs in a single model, and even achieves new state-ofthe-art on zero-shot language pairs that does not appear in the finetuning process. |
学校署名 | 共同第一
; 其他
|
语种 | 英语
|
来源库 | 人工提交
|
全文链接 | https://aclanthology.org/2022.findings-emnlp.215/ |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/535891 |
专题 | 南方科技大学 理学院_统计与数据科学系 |
作者单位 | 1.Shanghai University of Finance and Economics 2.Southern University of Science and Technology |
推荐引用方式 GB/T 7714 |
Weikang Wang,Guanhua Chen,Hanqing Wang,et al. Multilingual Sentence Transformer as A Multilingual Word Aligner[C],2022:2952–2963.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2022.findings-emnlp.(1960KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论