中文版 | English
题名

Optimization-Derived Learning with Essential Convergence Analysis of Training and Hyper-training

作者
通讯作者Zhang, Jin
发表日期
2022
会议名称
38th International Conference on Machine Learning (ICML)
ISSN
2640-3498
会议录名称
会议日期
JUL 17-23, 2022
会议地点
null,Baltimore,MD
出版地
1269 LAW ST, SAN DIEGO, CA, UNITED STATES
出版者
摘要
Recently, Optimization-Derived Learning (ODL) has attracted attention from learning and vision areas, which designs learning models from the perspective of optimization. However, previous ODL approaches regard the training and hyper-training procedures as two separated stages, meaning that the hyper-training variables have to be fixed during the training process, and thus it is also impossible to simultaneously obtain the convergence of training and hyper-training variables. In this work, we design a Generalized Krasnoselskii-Mann (GKM) scheme based on fixed-point iterations as our fundamental ODL module, which unifies existing ODL methods as special cases. Under the GKM scheme, a Bilevel Meta Optimization (BMO) algorithmic framework is constructed to solve the optimal training and hypertraining variables together. We rigorously prove the essential joint convergence of the fixed-point iteration for training and the process of optimizing hyper-parameters for hyper-training, both on the approximation quality, and on the stationary analysis. Experiments demonstrate the efficiency of BMO with competitive performance on sparse coding and real-world applications such as image deconvolution and rain streak removal.
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China["61922019","61733002","62027826","11971220"] ; National Key R&D Program of China[2020YFB1313503] ; major key project of PCL[PCL2021A12] ; Shenzhen Science and Technology Program[RCYX20200714114700072] ; Guangdong Basic and Applied Basic Research Foundation[2022B1515020082]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000900064903044
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536096
专题理学院_数学系
作者单位
1.Dalian Univ Technol, DUT RU Int Sch Informat Sci & Engn, Dalian, Liaoning, Peoples R China
2.Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian, Liaoning, Peoples R China
3.Peng Cheng Lab, Shenzhen, Guangdong, Peoples R China
4.Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
5.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Dept Math, Shenzhen, Guangdong, Peoples R China
6.Natl Ctr Appl Math Shenzhen, Shenzhen, Guangdong, Peoples R China
通讯作者单位数学系
推荐引用方式
GB/T 7714
Liu, Risheng,Liu, Xuan,Zeng, Shangzhi,et al. Optimization-Derived Learning with Essential Convergence Analysis of Training and Hyper-training[C]. 1269 LAW ST, SAN DIEGO, CA, UNITED STATES:JMLR-JOURNAL MACHINE LEARNING RESEARCH,2022.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Risheng]的文章
[Liu, Xuan]的文章
[Zeng, Shangzhi]的文章
百度学术
百度学术中相似的文章
[Liu, Risheng]的文章
[Liu, Xuan]的文章
[Zeng, Shangzhi]的文章
必应学术
必应学术中相似的文章
[Liu, Risheng]的文章
[Liu, Xuan]的文章
[Zeng, Shangzhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。