中文版 | English
题名

Machine learning-based approach for predicting the consolidation characteristics of soft soil

作者
通讯作者Borana, Lalit
发表日期
2023-03-01
DOI
发表期刊
ISSN
1064-119X
EISSN
1521-0618
摘要
In recent times, large-scale infrastructural projects are being constructed on varieties of soil, especially in highly compressible marine clays and soft soil. The coefficient of consolidation (c(v)) is one of the most important technical parameters used to estimate the consolidation characteristics of the soil. The experimental laboratory techniques used to obtain c(v) are time-consuming and possess different practical limitations. In this study, a reliable method for predicting c(v) is presented based on machine learning (ML). The study considered 11 inherent soil variables, among which the least significant variables are discarded using univariate feature selection technique. Different ML models were developed like the random forest, artificial neural network, and support vector machine for nonlinear mapping of the c(v) using dimensionally reduced independent variables. Verification against experimental data demonstrates that the Random Forest model accurately predicts the c(v) (with MAE = 0.0231, MSE= 0.00148, and RMSE = 0.03854). Further, a comparative study of the proposed model is presented with available empirical equations and numerically simulated data. Moreover, the strengths and shortcomings of different ML algorithms are also discussed in detail.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Engineering ; Oceanography ; Mining & Mineral Processing
WOS类目
Engineering, Ocean ; Engineering, Geological ; Oceanography ; Mining & Mineral Processing
WOS记录号
WOS:000971546700001
出版者
EI入藏号
20231714009908
EI主题词
Forestry ; Neural networks ; Support vector machines
EI分类号
Soils and Soil Mechanics:483.1 ; Computer Software, Data Handling and Applications:723 ; Agricultural Equipment and Methods; Vegetation and Pest Control:821
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536124
专题工学院_海洋科学与工程系
作者单位
1.Indian Inst Technol Indore, Civil Engn Dept, Indore 452020, Madhya Pradesh, India
2.Wuhan Univ Technol, Sch Civil Engn & Architecture, Wuhan, Hubei, Peoples R China
3.Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Singh, Moirangthem Johnson,Kaushik, Anshul,Patnaik, Gyanesh,et al. Machine learning-based approach for predicting the consolidation characteristics of soft soil[J]. MARINE GEORESOURCES & GEOTECHNOLOGY,2023.
APA
Singh, Moirangthem Johnson.,Kaushik, Anshul.,Patnaik, Gyanesh.,Xu, Dong-Sheng.,Feng, Wei-Qiang.,...&Borana, Lalit.(2023).Machine learning-based approach for predicting the consolidation characteristics of soft soil.MARINE GEORESOURCES & GEOTECHNOLOGY.
MLA
Singh, Moirangthem Johnson,et al."Machine learning-based approach for predicting the consolidation characteristics of soft soil".MARINE GEORESOURCES & GEOTECHNOLOGY (2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Singh, Moirangthem Johnson]的文章
[Kaushik, Anshul]的文章
[Patnaik, Gyanesh]的文章
百度学术
百度学术中相似的文章
[Singh, Moirangthem Johnson]的文章
[Kaushik, Anshul]的文章
[Patnaik, Gyanesh]的文章
必应学术
必应学术中相似的文章
[Singh, Moirangthem Johnson]的文章
[Kaushik, Anshul]的文章
[Patnaik, Gyanesh]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。