中文版 | English
题名

Groundwater Contamination Site Identification Based on Machine Learning: A Case Study of Gas Stations in China

作者
通讯作者Hu, Qing
发表日期
2023-04-01
DOI
发表期刊
EISSN
2073-4441
卷号15期号:7
摘要

Accurately identifying groundwater contamination sites is vital for groundwater protection and restoration. This study aims to use a machine learning (ML) approach to identify groundwater contamination sites with total petroleum hydrocarbons (TPH) as target contaminants in a case study of gas stations in China. Firstly, six classical ML algorithms, including logistic regression, decision tree, gradient boosting decision tree (GBDT), random forest, multi-layer perceptron, and support vector machine, were applied to develop the identification models of TPH-contaminated groundwater with 40 features and the performances were compared. The comparison results showed that the GBDT model achieves the best prediction performance, with F1 score of 1 and AUC value of 1. Next, Bayesian optimization optimized GBDT (BO-GBDT) was conducted to further decrease the training time from 19,125 s to 513 s while maintaining the same prediction performance (F1 score = 1, AUC = 1). Finally, Shapley additive explanations (SHAP) analysis was performed on the BO-GBDT model. The SHAP results displayed that the critical feature variables in the BO-GBDT model include wind, population, evaporation, total potassium in the soil, precipitation, and leakage accident. This study demonstrated that BO-GBDT is one satisfactory model to identify groundwater TPH-contamination at gas stations. The method proposed in this study has the potential to be applied to other types of groundwater contamination sites.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key R&D Program of China[
WOS研究方向
Environmental Sciences & Ecology ; Water Resources
WOS类目
Environmental Sciences ; Water Resources
WOS记录号
WOS:000970179300001
出版者
EI入藏号
20231713944111
EI主题词
Adaptive Boosting ; Additives ; Contamination ; Groundwater ; Groundwater Pollution ; Learning Systems ; Support Vector Machines
EI分类号
Groundwater:444.2 ; Water Pollution Sources:453.1 ; Computer Software, Data HAndling And Applications:723 ; Chemical Agents And Basic Industrial Chemicals:803 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Systems Science:961
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536142
专题工学院_环境科学与工程学院
作者单位
1.Harbin Inst Technol, Sch Environm, Harbin 150090, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
3.Minist Ecol & Environm, Tech Ctr Soil Agr & Rural Ecol & Environm, Beijing 100012, Peoples R China
4.Chinese Acad Environm Planning, Beijing 100043, Peoples R China
5.Southern Univ Sci & Technol, Engn Innovat Ctr SUSTech Beijing, Beijing 100083, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院;  南方科技大学
推荐引用方式
GB/T 7714
Huang, Yanpeng,Ding, Longzhen,Liu, Weijiang,et al. Groundwater Contamination Site Identification Based on Machine Learning: A Case Study of Gas Stations in China[J]. WATER,2023,15(7).
APA
Huang, Yanpeng.,Ding, Longzhen.,Liu, Weijiang.,Niu, Haobo.,Yang, Mengxi.,...&Hu, Qing.(2023).Groundwater Contamination Site Identification Based on Machine Learning: A Case Study of Gas Stations in China.WATER,15(7).
MLA
Huang, Yanpeng,et al."Groundwater Contamination Site Identification Based on Machine Learning: A Case Study of Gas Stations in China".WATER 15.7(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
water-15-01326-v2.pd(5888KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Yanpeng]的文章
[Ding, Longzhen]的文章
[Liu, Weijiang]的文章
百度学术
百度学术中相似的文章
[Huang, Yanpeng]的文章
[Ding, Longzhen]的文章
[Liu, Weijiang]的文章
必应学术
必应学术中相似的文章
[Huang, Yanpeng]的文章
[Ding, Longzhen]的文章
[Liu, Weijiang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: water-15-01326-v2.pdf
格式: Adobe PDF
文件名: water-15-01326-v2.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。