中文版 | English
题名

Surface-wave dispersion curves extraction method from ambient noise based on U-net plus plus and density clustering algorithm

作者
通讯作者Yuan, Sanyi
发表日期
2023-06-01
DOI
发表期刊
ISSN
0926-9851
EISSN
1879-1859
卷号213
摘要
It is crucial to accurately and rapidly extract dispersion curves of surface waves from ambient noise recordings for inverting the subsurface shear (S) wave velocity structures. Conventional manual picking methods are labor-intensive and affected by subjective factors related to seismologists. The existing deep learning methods can automatically and efficiently extract dispersion curves from dispersion spectrograms with a single branch. However, extracting dispersion curves from phase-velocity dispersion spectrograms with multiple branches re-mains challenging due to complex label-making processes and extensive label-preparation times. Notably, phase velocities typically display a positive correlation with periods and are slightly higher than group velocities. Given the significance of this empirical relationship, we present an intelligent surface-wave dispersion curves extraction method based on U-net++ and density clustering algorithm. Initially, guided by domain knowledge that dispersion curves are smooth, a global searching method is employed to automatically label group-velocity dispersion curves from group-velocity dispersion spectrograms. Subsequently, the group-velocity dispersion curves undergo transformation into probability images of the curves using a Gaussian function. The U-net++ then nonlinearly converts group-velocity dispersion spectrograms into probability images of group-velocity dispersion curves within a high-dimensional space. Following this, the Density-Based Spatial Clustering of Ap-plications with Noise (DBSCAN) algorithm is applied to obtain multi-mode phase-velocity dispersion curves from phase-velocity dispersion spectrograms. We then remove invalid dispersion values in the multi-mode phase-velocity dispersion curves based on the empirical relationship between phase and group velocities, ultimately obtaining the phase-velocity dispersion curve corresponding to the group-velocity dispersion curve. Our pro-posed method has been tested using synthetic data and 3D real-world data collected near Lake Chao in Anhui Province. The test results show that our approach effectively extracts both group-velocity and phase-velocity dispersion curves. Inverted S-wave velocity structures based on extracted dispersion curves in real-world data can characterize the Tan-Lu fault zone, demonstrating the effectiveness of our proposed method.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Key R & D Program of China[2018YFA0702504] ; China National Petroleum Corporation (CNPC)[ZLZX2020-03] ; China University of Petroleum -Beijing (CUPB)[ZLZX2020-03]
WOS研究方向
Geology ; Mining & Mineral Processing
WOS类目
Geosciences, Multidisciplinary ; Mining & Mineral Processing
WOS记录号
WOS:000985332800001
出版者
EI入藏号
20231713947929
EI主题词
Acoustic noise ; Acoustic wave velocity ; Clustering algorithms ; Convolutional neural networks ; Data mining ; Deep learning ; Extraction ; Genetic algorithms ; Learning systems ; Light velocity ; Phase velocity ; Shear flow ; Shear waves ; Surface waves
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Fluid Flow, General:631.1 ; Electromagnetic Waves in Different Media:711.1 ; Data Processing and Image Processing:723.2 ; Light/Optics:741.1 ; Acoustic Waves:751.1 ; Acoustic Noise:751.4 ; Chemical Operations:802.3 ; Information Sources and Analysis:903.1 ; Mechanics:931.1
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536195
专题理学院_地球与空间科学系
作者单位
1.China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing, Peoples R China
2.Chinese Acad Geol Sci, Inst Geomech, Beijing, Peoples R China
3.AGH Univ Sci & Technol, Krakow, Poland
4.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen, Peoples R China
通讯作者单位地球与空间科学系
推荐引用方式
GB/T 7714
Hu, Wei,Zhang, Hao,Sang, Wenjing,et al. Surface-wave dispersion curves extraction method from ambient noise based on U-net plus plus and density clustering algorithm[J]. JOURNAL OF APPLIED GEOPHYSICS,2023,213.
APA
Hu, Wei,Zhang, Hao,Sang, Wenjing,Anna, Sowizdzal,Yuan, Shichuan,&Yuan, Sanyi.(2023).Surface-wave dispersion curves extraction method from ambient noise based on U-net plus plus and density clustering algorithm.JOURNAL OF APPLIED GEOPHYSICS,213.
MLA
Hu, Wei,et al."Surface-wave dispersion curves extraction method from ambient noise based on U-net plus plus and density clustering algorithm".JOURNAL OF APPLIED GEOPHYSICS 213(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hu, Wei]的文章
[Zhang, Hao]的文章
[Sang, Wenjing]的文章
百度学术
百度学术中相似的文章
[Hu, Wei]的文章
[Zhang, Hao]的文章
[Sang, Wenjing]的文章
必应学术
必应学术中相似的文章
[Hu, Wei]的文章
[Zhang, Hao]的文章
[Sang, Wenjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。