中文版 | English
题名

Collaborative 3D Object Detection for Autonomous Vehicles via Learnable Communications

作者
通讯作者Zeng, Y.; Gong, Y.
发表日期
2023-05-01
DOI
发表期刊
ISSN
1524-9050
EISSN
1558-0016
卷号PP期号:99页码:1-13
摘要
3D object detection from LiDAR point cloud is a challenging task in autonomous driving systems. Collaborative perception can incorporate information from spatially diverse sensors and provide significant benefits for accurate 3D object detection from point clouds. In this work, we consider that the autonomous vehicle uses local point cloud data and combines information from neighboring infrastructures through wireless links for cooperative 3D object detection. However, information sharing among vehicles and infrastructures in predefined communication schemes may result in communication congestion and/or bring limited performance improvement. To this end, we propose a novel collaborative 3D object detection framework using an encoder-decoder network architecture and an attention-based learnable communications scheme. It consists of three components: a feature encoder network that maps point clouds into feature maps; an attention-based communication module that propagates compact and fine-grained query feature maps from the vehicle to support infrastructures, and optimizes attention weights between query and key to refine support feature maps; a region proposal network that fuses local feature maps and weighted support feature maps for 3D object detection. We evaluate the performance of the proposed framework on CARLA-3D, a new dataset that we synthesized using CARLA for 3D cooperative object detection. Experimental results and bandwidth consumption analysis show that the proposed collaborative 3D object detection framework achieves a better detection performance and communication bandwidth trade-off than five baseline 3D object detection models under different detection difficulties.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China["62071212","62106095"] ; Guangdong Basic and Applied Basic Research Foundation[2019B1515130003] ; Guangdong Provincial Department of Education[2020ZDZX3057]
WOS研究方向
Engineering ; Transportation
WOS类目
Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号
WOS:000988487400001
出版者
EI入藏号
20232114131612
EI主题词
Autonomous vehicles ; Economic and social effects ; Feature extraction ; Network architecture ; Object detection ; Object recognition ; Three dimensional displays ; Traffic congestion ; Vehicle to vehicle communications
EI分类号
Highway Transportation:432 ; Information Theory and Signal Processing:716.1 ; Radio Systems and Equipment:716.3 ; Computer Peripheral Equipment:722.2 ; Data Processing and Image Processing:723.2 ; Robot Applications:731.6 ; Social Sciences:971
ESI学科分类
ENGINEERING
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10122468
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536245
专题工学院_电子与电气工程系
作者单位
1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
第一作者单位电子与电气工程系
通讯作者单位南方科技大学;  电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Wang, J.,Zeng, Y.,Gong, Y.. Collaborative 3D Object Detection for Autonomous Vehicles via Learnable Communications[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2023,PP(99):1-13.
APA
Wang, J.,Zeng, Y.,&Gong, Y..(2023).Collaborative 3D Object Detection for Autonomous Vehicles via Learnable Communications.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,PP(99),1-13.
MLA
Wang, J.,et al."Collaborative 3D Object Detection for Autonomous Vehicles via Learnable Communications".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS PP.99(2023):1-13.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, J.]的文章
[Zeng, Y.]的文章
[Gong, Y.]的文章
百度学术
百度学术中相似的文章
[Wang, J.]的文章
[Zeng, Y.]的文章
[Gong, Y.]的文章
必应学术
必应学术中相似的文章
[Wang, J.]的文章
[Zeng, Y.]的文章
[Gong, Y.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。