中文版 | English
题名

GANSim-surrogate: An integrated framework for stochastic conditional geomodelling

作者
通讯作者Zhang, Dongxiao
发表日期
2023-05-01
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号620
摘要
Stochastic conditional geomodelling requires effective integration of geological patterns and various types of data, which is crucial but challenging. To address this, we propose a deep-learning framework (GANSim-sur-rogate) for conditioning geomodels to static well facies data, facies probability maps, and non-spatial global features, as well as dynamic time-dependent pressure or flow rate data observed at wells. The framework consists of a Convolutional Neural Network (CNN) generator trained from GANSim (a Generative Adversarial Network -based geomodelling simulation approach), a CNN-based surrogate, and options for searching appropriate input latent vectors for the generator. The four search methods investigated are Markov Chain Monte Carlo, Iterative Ensemble Smoother, gradient descent, and gradual deformation. The framework is validated with channelized reservoirs. First, a generator is trained using GANSim to generate geological facies models; in addition, a flow simulation surrogate is trained using a physics-informed approach. Then, given well facies data, facies proba-bility maps, global facies proportions, and dynamic bottomhole pressure data (BHP), the trained generator takes the first three static conditioning data and a latent vector as inputs and produces a random realistic facies model conditioned to the three static data. To condition to the dynamic data, the produced facies model is converted to permeability property and mapped to BHP data by the trained surrogate. Finally, the mismatch between the surrogate-produced and the observed BHP data is minimized to obtain appropriate input latent vectors which are further mapped into appropriate facies models through the generator. These facies models prove to be realistic and consistent with all of the conditioning data, and the framework is computationally efficient.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[52288101]
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:000990444800001
出版者
EI入藏号
20231714025613
EI主题词
Convolution ; Convolutional neural networks ; Deep learning ; Dynamics ; Geology ; Gradient methods ; Markov processes ; Monte Carlo methods ; Stochastic models ; Stochastic systems
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Geology:481.1 ; Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Control Systems:731.1 ; Numerical Methods:921.6 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 ; Systems Science:961
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536271
专题南方科技大学
作者单位
1.Peng Cheng Lab, Dept Math & Theories, Shenzhen 518000, Peoples R China
2.Stanford Univ, Dept Energy Sci & Engn, 367 Panama St, Stanford, CA 94305 USA
3.Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Zhejiang, Peoples R China
4.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518000, Peoples R China
5.Peking Univ, Coll Engn, BIC, ERE,ESAT, Beijing 100871, Peoples R China
6.Peking Univ, Coll Engn, SKLTCS, Beijing 100871, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Song, Suihong,Zhang, Dongxiao,Mukerji, Tapan,et al. GANSim-surrogate: An integrated framework for stochastic conditional geomodelling[J]. JOURNAL OF HYDROLOGY,2023,620.
APA
Song, Suihong,Zhang, Dongxiao,Mukerji, Tapan,&Wang, Nanzhe.(2023).GANSim-surrogate: An integrated framework for stochastic conditional geomodelling.JOURNAL OF HYDROLOGY,620.
MLA
Song, Suihong,et al."GANSim-surrogate: An integrated framework for stochastic conditional geomodelling".JOURNAL OF HYDROLOGY 620(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song, Suihong]的文章
[Zhang, Dongxiao]的文章
[Mukerji, Tapan]的文章
百度学术
百度学术中相似的文章
[Song, Suihong]的文章
[Zhang, Dongxiao]的文章
[Mukerji, Tapan]的文章
必应学术
必应学术中相似的文章
[Song, Suihong]的文章
[Zhang, Dongxiao]的文章
[Mukerji, Tapan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。