中文版 | English
题名

Overcoming Data Deficiency for Multi-Person Pose Estimation

作者
通讯作者Song, Jingkuan
发表日期
2023-05-01
DOI
发表期刊
ISSN
2162-237X
EISSN
2162-2388
卷号PP期号:99页码:1-12
摘要
Building multi-person pose estimation (MPPE) models that can handle complex foreground and uncommon scenes is an important challenge in computer vision. Aside from designing novel models, strengthening training data is a promising direction but remains largely unexploited for the MPPE task. In this article, we systematically identify the key deficiencies of existing pose datasets that prevent the power of well-designed models from being fully exploited and propose the corresponding solutions. Specifically, we find that the traditional data augmentation techniques are inadequate in addressing the two key deficiencies, imbalanced instance complexity (IC) (evaluated by our new metric IC) and insufficient realistic scenes. To overcome these deficiencies, we propose a model-agnostic full-view data generation (Full-DG) method to enrich the training data from the perspectives of both poses and scenes. By hallucinating images with more balanced pose complexity and richer real-world scenes, Full-DG can help improve pose estimators' robustness and generalizability. In addition, we introduce a plug-and-play adaptive category-aware loss (AC-loss) to alleviate the severe pixel-level imbalance between keypoints and backgrounds (i.e., around 1:600). Full-DG together with AC-loss can be readily applied to both the bottom-up and top-down models to improve their accuracy. Notably, plugging into the representative estimators HigherHRNet and HRNet, our method achieves substantial performance gains of 1.0%-2.9% AP on the COCO benchmark, and 1.0%-5.1% AP on the CrowdPose benchmark.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China["2022YFC2009903","2022YFC2009900"] ; National Natural Science Foundation of China["62122018","62020106008","61772116","61872064"] ; Fok Ying-Tong Education Foundation[171106] ; SongShan Laboratory[YYJC012022019]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000988411700001
出版者
EI入藏号
20232114132110
EI主题词
Computer vision ; Image enhancement ; Integrated circuits ; Job analysis ; Timing circuits
EI分类号
Pulse Circuits:713.4 ; Semiconductor Devices and Integrated Circuits:714.2 ; Computer Applications:723.5 ; Vision:741.2
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10122653
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536283
专题工学院_计算机科学与工程系
作者单位
1.Univ Elect Sci & Technol China, Future Media Ctr, Chengdu 611731, Peoples R China
2.Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
3.Univ Elect Sci & Technol China, Sichuan Prov People Hosp, Chengdu 611731, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Dai, Yan,Wang, Xuanhan,Gao, Lianli,et al. Overcoming Data Deficiency for Multi-Person Pose Estimation[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2023,PP(99):1-12.
APA
Dai, Yan,Wang, Xuanhan,Gao, Lianli,Song, Jingkuan,Zheng, Feng,&Shen, Heng Tao.(2023).Overcoming Data Deficiency for Multi-Person Pose Estimation.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,PP(99),1-12.
MLA
Dai, Yan,et al."Overcoming Data Deficiency for Multi-Person Pose Estimation".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS PP.99(2023):1-12.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dai, Yan]的文章
[Wang, Xuanhan]的文章
[Gao, Lianli]的文章
百度学术
百度学术中相似的文章
[Dai, Yan]的文章
[Wang, Xuanhan]的文章
[Gao, Lianli]的文章
必应学术
必应学术中相似的文章
[Dai, Yan]的文章
[Wang, Xuanhan]的文章
[Gao, Lianli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。