题名 | Predicting the state of health of VRLA batteries in UPS using data-driven method |
作者 | |
通讯作者 | Jian, Linni |
发表日期 | 2023-09-01
|
DOI | |
发表期刊 | |
ISSN | 2352-4847
|
卷号 | 9页码:184-190 |
摘要 | Uninterruptible power battery (UPS) is an important part to ensure the stable operation of data center. Its security is related to the reliability and stability of power system. Among them, the state of health (SOH) prediction is a key issue of the valve regulated lead-acid (VRLA) battery operation and maintenance in data center. In this work, the battery SOH is predicted by the correlation between the nadir voltage value of Coup De Fouet (CDF) phenomenon and SOH. Then, the CDF phenomenon is combined with popular data-driven methods, such as linear regression, regression tree, support-vector machine, gaussian process, neural network, to predict battery SOH through 215 features. Finally, the above method is verified with the real discharge dataset of UPS battery in data center. The experimental results show that the data-driven method combining big data has higher accuracy than the simple prediction of battery SOH based on the nadir voltage value of CDF phenomenon and its variants. (c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Department of Education of Guangdong Province,China[2020ZDZX3002]
; Guangzhou Municipal Science and Technology Bureau[202102010416]
; Science and Technology Innovation Committee of Shenzhen, China[JCYJ20220530113008019]
|
WOS研究方向 | Energy & Fuels
|
WOS类目 | Energy & Fuels
|
WOS记录号 | WOS:000988867400001
|
出版者 | |
EI入藏号 | 20231714020055
|
EI主题词 | Support vector machines
; Trees (mathematics)
; Uninterruptible power systems
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536286 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Tencent Inc, Shenzhen 518052, Peoples R China 2.Southern Univ Sci & Technol, Jiaxing Res Inst, Jiaxing 314050, Peoples R China 3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China 4.Kyushu Univ, WPI I2CNER, Fukuoka 8190395, Japan 5.Kyushu Univ, IMI, Fukuoka 8190395, Japan |
第一作者单位 | 南方科技大学; 电子与电气工程系 |
通讯作者单位 | 南方科技大学; 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Shang, Yitong,Zheng, Weike,Yan, Xiaoyun,et al. Predicting the state of health of VRLA batteries in UPS using data-driven method[J]. ENERGY REPORTS,2023,9:184-190.
|
APA |
Shang, Yitong,Zheng, Weike,Yan, Xiaoyun,Nguyen, Dinh Hoa,&Jian, Linni.(2023).Predicting the state of health of VRLA batteries in UPS using data-driven method.ENERGY REPORTS,9,184-190.
|
MLA |
Shang, Yitong,et al."Predicting the state of health of VRLA batteries in UPS using data-driven method".ENERGY REPORTS 9(2023):184-190.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论