中文版 | English
题名

Predicting the state of health of VRLA batteries in UPS using data-driven method

作者
通讯作者Jian, Linni
发表日期
2023-09-01
DOI
发表期刊
ISSN
2352-4847
卷号9页码:184-190
摘要
Uninterruptible power battery (UPS) is an important part to ensure the stable operation of data center. Its security is related to the reliability and stability of power system. Among them, the state of health (SOH) prediction is a key issue of the valve regulated lead-acid (VRLA) battery operation and maintenance in data center. In this work, the battery SOH is predicted by the correlation between the nadir voltage value of Coup De Fouet (CDF) phenomenon and SOH. Then, the CDF phenomenon is combined with popular data-driven methods, such as linear regression, regression tree, support-vector machine, gaussian process, neural network, to predict battery SOH through 215 features. Finally, the above method is verified with the real discharge dataset of UPS battery in data center. The experimental results show that the data-driven method combining big data has higher accuracy than the simple prediction of battery SOH based on the nadir voltage value of CDF phenomenon and its variants. (c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Department of Education of Guangdong Province,China[2020ZDZX3002] ; Guangzhou Municipal Science and Technology Bureau[202102010416] ; Science and Technology Innovation Committee of Shenzhen, China[JCYJ20220530113008019]
WOS研究方向
Energy & Fuels
WOS类目
Energy & Fuels
WOS记录号
WOS:000988867400001
出版者
EI入藏号
20231714020055
EI主题词
Support vector machines ; Trees (mathematics) ; Uninterruptible power systems
EI分类号
Computer Software, Data Handling and Applications:723 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536286
专题工学院_电子与电气工程系
作者单位
1.Tencent Inc, Shenzhen 518052, Peoples R China
2.Southern Univ Sci & Technol, Jiaxing Res Inst, Jiaxing 314050, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
4.Kyushu Univ, WPI I2CNER, Fukuoka 8190395, Japan
5.Kyushu Univ, IMI, Fukuoka 8190395, Japan
第一作者单位南方科技大学;  电子与电气工程系
通讯作者单位南方科技大学;  电子与电气工程系
推荐引用方式
GB/T 7714
Shang, Yitong,Zheng, Weike,Yan, Xiaoyun,et al. Predicting the state of health of VRLA batteries in UPS using data-driven method[J]. ENERGY REPORTS,2023,9:184-190.
APA
Shang, Yitong,Zheng, Weike,Yan, Xiaoyun,Nguyen, Dinh Hoa,&Jian, Linni.(2023).Predicting the state of health of VRLA batteries in UPS using data-driven method.ENERGY REPORTS,9,184-190.
MLA
Shang, Yitong,et al."Predicting the state of health of VRLA batteries in UPS using data-driven method".ENERGY REPORTS 9(2023):184-190.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shang, Yitong]的文章
[Zheng, Weike]的文章
[Yan, Xiaoyun]的文章
百度学术
百度学术中相似的文章
[Shang, Yitong]的文章
[Zheng, Weike]的文章
[Yan, Xiaoyun]的文章
必应学术
必应学术中相似的文章
[Shang, Yitong]的文章
[Zheng, Weike]的文章
[Yan, Xiaoyun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。