中文版 | English
题名

A new xAI framework with feature explainability for tumors decision-making in Ultrasound data: comparing with Grad-CAM

作者
通讯作者Xu, Jinfeng; Xu, Dong; Wu, Linghu; Dong, Fajin
发表日期
2023-06-01
DOI
发表期刊
ISSN
0169-2607
EISSN
1872-7565
卷号235
摘要
Background and objective: The value of implementing artificial intelligence (AI) on ultrasound screening for thyroid cancer has been acknowledged, with numerous early studies confirming AI might help physi-cians acquire more accurate diagnoses. However, the black box nature of AI's decision-making process makes it difficult for users to grasp the foundation of AI's predictions. Furthermore, explainability is not only related to AI performance, but also responsibility and risk in medical diagnosis. In this paper, we offer Explainer, an intrinsically explainable framework that can categorize images and create heatmaps highlighting the regions on which its prediction is based. Methods: A dataset of 19341 thyroid ultrasound images with pathological results and physician -annotated TI-RADS features is used to train and test the robustness of the proposed framework. Then we conducted a benign-malignant classification study to determine whether physicians perform better with the assistance of an explainer than they do alone or with Gradient-weighted Class Activation Mapping (Grad-CAM). Results: Reader studies show that the Explainer can achieve a more accurate diagnosis while explaining heatmaps, and that physicians' performances are improved when assisted by the Explainer. Case study results confirm that the Explainer is capable of locating more reasonable and feature-related regions than the Grad-CAM. Conclusions: The Explainer offers physicians a tool to understand the basis of AI predictions and evaluate their reliability, which has the potential to unbox the "black box" of medical imaging AI. (c) 2023 Elsevier B.V. All rights reserved.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Commission of Science and Tech- nology of Shenzhen[GJHZ20200731095401004]
WOS研究方向
Computer Science ; Engineering ; Medical Informatics
WOS类目
Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods ; Engineering, Biomedical ; Medical Informatics
WOS记录号
WOS:000983668100001
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536296
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Shenzhen Peoples Hosp, Clin Med Coll 2, Dept Ultrasound, Shenzhen 518020, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen 518020, Guangdong, Peoples R China
3.Univ Chinese Acad Sci, Zhejiang Canc Hosp, Inst Basic Med & Canc IBMC, Chinese Acad Sci,Canc Hosp, Hangzhou 310022, Zhejiang, Peoples R China
4.Microport Prophecy, Res & Dev Dept, Shanghai 201203, Peoples R China
5.Illuminate LLC, Res & Dev Dept, Shenzhen 518000, Guangdong, Peoples R China
第一作者单位南方科技大学第一附属医院
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Song, Di,Yao, Jincao,Jiang, Yitao,et al. A new xAI framework with feature explainability for tumors decision-making in Ultrasound data: comparing with Grad-CAM[J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE,2023,235.
APA
Song, Di.,Yao, Jincao.,Jiang, Yitao.,Shi, Siyuan.,Cui, Chen.,...&Dong, Fajin.(2023).A new xAI framework with feature explainability for tumors decision-making in Ultrasound data: comparing with Grad-CAM.COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE,235.
MLA
Song, Di,et al."A new xAI framework with feature explainability for tumors decision-making in Ultrasound data: comparing with Grad-CAM".COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 235(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song, Di]的文章
[Yao, Jincao]的文章
[Jiang, Yitao]的文章
百度学术
百度学术中相似的文章
[Song, Di]的文章
[Yao, Jincao]的文章
[Jiang, Yitao]的文章
必应学术
必应学术中相似的文章
[Song, Di]的文章
[Yao, Jincao]的文章
[Jiang, Yitao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。