中文版 | English
题名

CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation

作者
通讯作者Ye, Fangfu; Liu, Jiang
共同第一作者Wang, Yiming; Hu, Yan
发表日期
2023-05-01
DOI
发表期刊
ISSN
1861-6410
EISSN
1861-6429
卷号18期号:10
摘要

PurposeAutomatic surgical instrument segmentation is a crucial step for robotic-aided surgery. Encoder-decoder construction-based methods often directly fuse high-level and low-level features by skip connection to supplement some detailed information. However, irrelevant information fusion also increases misclassification or wrong segmentation, especially for complex surgical scenes. Uneven illumination always results in instruments similar to other tissues of background, which greatly increases the difficulty of automatic surgical instrument segmentation. The paper proposes a novel network to solve the problem.MethodsThe paper proposes to guide the network to select effective features for instrument segmentation. The network is named context-guided bidirectional attention network (CGBANet). The guidance connection attention (GCA) module is inserted into the network to adaptively filter out irrelevant low-level features. Moreover, we propose bidirectional attention (BA) module for the GCA module to capture both local information and local-global dependency for surgical scenes to provide accurate instrument features.ResultsThe superiority of our CGBA-Net is verified by multiple instrument segmentation on two publicly available datasets of different surgical scenarios, including an endoscopic vision dataset (EndoVis 2018) and a cataract surgery dataset. Extensive experimental results demonstrate our CGBA-Net outperforms the state-of-the-art methods on two datasets. Ablation study based on the datasets proves the effectiveness of our modules.ConclusionThe proposed CGBA-Net increased the accuracy of multiple instruments segmentation, which accurately classifies and segments the instruments. The proposed modules effectively provided instrument-related features for the network.

关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
共同第一 ; 通讯
资助项目
General Program of National Natural Science Foundation of China[
WOS研究方向
Engineering ; Radiology, Nuclear Medicine & Medical Imaging ; Surgery
WOS类目
Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging ; Surgery
WOS记录号
WOS:000990483400002
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536324
专题工学院_计算机科学与工程系
作者单位
1.Wenzhou Med Univ, Sch Ophthalmol & Optometry, Sch Biomed Engn, Wenzhou 325035, Zhejiang, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
3.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Guangdong, Peoples R China
通讯作者单位计算机科学与工程系;  南方科技大学
推荐引用方式
GB/T 7714
Wang, Yiming,Hu, Yan,Shen, Junyong,et al. CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation[J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY,2023,18(10).
APA
Wang, Yiming.,Hu, Yan.,Shen, Junyong.,Zhang, Xiaoqing.,Li, Heng.,...&Liu, Jiang.(2023).CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation.INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY,18(10).
MLA
Wang, Yiming,et al."CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation".INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY 18.10(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Yiming]的文章
[Hu, Yan]的文章
[Shen, Junyong]的文章
百度学术
百度学术中相似的文章
[Wang, Yiming]的文章
[Hu, Yan]的文章
[Shen, Junyong]的文章
必应学术
必应学术中相似的文章
[Wang, Yiming]的文章
[Hu, Yan]的文章
[Shen, Junyong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。