题名 | CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation |
作者 | |
通讯作者 | Ye, Fangfu; Liu, Jiang |
共同第一作者 | Wang, Yiming; Hu, Yan |
发表日期 | 2023-05-01
|
DOI | |
发表期刊 | |
ISSN | 1861-6410
|
EISSN | 1861-6429
|
卷号 | 18期号:10 |
摘要 | PurposeAutomatic surgical instrument segmentation is a crucial step for robotic-aided surgery. Encoder-decoder construction-based methods often directly fuse high-level and low-level features by skip connection to supplement some detailed information. However, irrelevant information fusion also increases misclassification or wrong segmentation, especially for complex surgical scenes. Uneven illumination always results in instruments similar to other tissues of background, which greatly increases the difficulty of automatic surgical instrument segmentation. The paper proposes a novel network to solve the problem.MethodsThe paper proposes to guide the network to select effective features for instrument segmentation. The network is named context-guided bidirectional attention network (CGBANet). The guidance connection attention (GCA) module is inserted into the network to adaptively filter out irrelevant low-level features. Moreover, we propose bidirectional attention (BA) module for the GCA module to capture both local information and local-global dependency for surgical scenes to provide accurate instrument features.ResultsThe superiority of our CGBA-Net is verified by multiple instrument segmentation on two publicly available datasets of different surgical scenarios, including an endoscopic vision dataset (EndoVis 2018) and a cataract surgery dataset. Extensive experimental results demonstrate our CGBA-Net outperforms the state-of-the-art methods on two datasets. Ablation study based on the datasets proves the effectiveness of our modules.ConclusionThe proposed CGBA-Net increased the accuracy of multiple instruments segmentation, which accurately classifies and segments the instruments. The proposed modules effectively provided instrument-related features for the network. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 共同第一
; 通讯
|
资助项目 | General Program of National Natural Science Foundation of China[
|
WOS研究方向 | Engineering
; Radiology, Nuclear Medicine & Medical Imaging
; Surgery
|
WOS类目 | Engineering, Biomedical
; Radiology, Nuclear Medicine & Medical Imaging
; Surgery
|
WOS记录号 | WOS:000990483400002
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536324 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Wenzhou Med Univ, Sch Ophthalmol & Optometry, Sch Biomed Engn, Wenzhou 325035, Zhejiang, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China 3.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Guangdong, Peoples R China |
通讯作者单位 | 计算机科学与工程系; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wang, Yiming,Hu, Yan,Shen, Junyong,et al. CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation[J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY,2023,18(10).
|
APA |
Wang, Yiming.,Hu, Yan.,Shen, Junyong.,Zhang, Xiaoqing.,Li, Heng.,...&Liu, Jiang.(2023).CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation.INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY,18(10).
|
MLA |
Wang, Yiming,et al."CGBA-Net: context-guided bidirectional attention network for surgical instrument segmentation".INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY 18.10(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论