题名 | Noise covariance estimation via autocovariance least-squares with deadbeat filters |
作者 | |
通讯作者 | Kong, He |
发表日期 | 2023-07-01
|
DOI | |
发表期刊 | |
ISSN | 0005-1098
|
EISSN | 1873-2836
|
卷号 | 153 |
摘要 | Autocovariance least-squares (ALS) is a correlation-based noise covariance estimation method that has received much attention recently. However, most existing works focus on the situation without knowledge of the process and measurement noise shaping matrices, i.e., the latter two are taken to be identity matrices in most existing methods. In practice, one might have some prior structural information about how the process/measurement noises affect the system dynamics/measurements. For the above case where the noise shaping matrices are not identity matrices, concise conditions under which the system noise covariances can be uniquely identified have not been discovered so far. To fill the above gap, in this paper, we propose to use deadbeat filters in the ALS framework. By doing so, we will establish concrete sufficient conditions under which one can uniquely identify the process, measurement, and the cross noise covariance matrices. The above results will also be extended to systems with unknown inputs. Albeit the results might be of limited scope, to the best of our knowledge, this is the first time such conditions have been presented in the literature for standard linear systems and systems with unknown inputs. (c) 2023 Elsevier Ltd. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Science, Technology, and Innovation Commission of Shenzhen Municipality, China[ZDSYS20220330161800001]
|
WOS研究方向 | Automation & Control Systems
; Engineering
|
WOS类目 | Automation & Control Systems
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000986034100001
|
出版者 | |
EI入藏号 | 20231714006870
|
EI主题词 | Covariance matrix
; Least squares approximations
; Linear systems
|
EI分类号 | Mathematics:921
; Numerical Methods:921.6
; Systems Science:961
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536345 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen Key Lab Control Theory & Intelligent Syst, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat & Rehabil R, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Ctr Control Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen 518055, Peoples R China |
第一作者单位 | 南方科技大学; 系统设计与智能制造学院 |
通讯作者单位 | 南方科技大学; 系统设计与智能制造学院 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Kong, He. Noise covariance estimation via autocovariance least-squares with deadbeat filters[J]. AUTOMATICA,2023,153.
|
APA |
Kong, He.(2023).Noise covariance estimation via autocovariance least-squares with deadbeat filters.AUTOMATICA,153.
|
MLA |
Kong, He."Noise covariance estimation via autocovariance least-squares with deadbeat filters".AUTOMATICA 153(2023).
|
条目包含的文件 | 条目无相关文件。 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[Kong, He]的文章 |
百度学术 |
百度学术中相似的文章 |
[Kong, He]的文章 |
必应学术 |
必应学术中相似的文章 |
[Kong, He]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论