中文版 | English
题名

Noise covariance estimation via autocovariance least-squares with deadbeat filters

作者
通讯作者Kong, He
发表日期
2023-07-01
DOI
发表期刊
ISSN
0005-1098
EISSN
1873-2836
卷号153
摘要
Autocovariance least-squares (ALS) is a correlation-based noise covariance estimation method that has received much attention recently. However, most existing works focus on the situation without knowledge of the process and measurement noise shaping matrices, i.e., the latter two are taken to be identity matrices in most existing methods. In practice, one might have some prior structural information about how the process/measurement noises affect the system dynamics/measurements. For the above case where the noise shaping matrices are not identity matrices, concise conditions under which the system noise covariances can be uniquely identified have not been discovered so far. To fill the above gap, in this paper, we propose to use deadbeat filters in the ALS framework. By doing so, we will establish concrete sufficient conditions under which one can uniquely identify the process, measurement, and the cross noise covariance matrices. The above results will also be extended to systems with unknown inputs. Albeit the results might be of limited scope, to the best of our knowledge, this is the first time such conditions have been presented in the literature for standard linear systems and systems with unknown inputs. (c) 2023 Elsevier Ltd. All rights reserved.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Science, Technology, and Innovation Commission of Shenzhen Municipality, China[ZDSYS20220330161800001]
WOS研究方向
Automation & Control Systems ; Engineering
WOS类目
Automation & Control Systems ; Engineering, Electrical & Electronic
WOS记录号
WOS:000986034100001
出版者
EI入藏号
20231714006870
EI主题词
Covariance matrix ; Least squares approximations ; Linear systems
EI分类号
Mathematics:921 ; Numerical Methods:921.6 ; Systems Science:961
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536345
专题工学院_系统设计与智能制造学院
作者单位
1.Southern Univ Sci & Technol, Shenzhen Key Lab Control Theory & Intelligent Syst, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat & Rehabil R, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Ctr Control Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen 518055, Peoples R China
第一作者单位南方科技大学;  系统设计与智能制造学院
通讯作者单位南方科技大学;  系统设计与智能制造学院
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Kong, He. Noise covariance estimation via autocovariance least-squares with deadbeat filters[J]. AUTOMATICA,2023,153.
APA
Kong, He.(2023).Noise covariance estimation via autocovariance least-squares with deadbeat filters.AUTOMATICA,153.
MLA
Kong, He."Noise covariance estimation via autocovariance least-squares with deadbeat filters".AUTOMATICA 153(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kong, He]的文章
百度学术
百度学术中相似的文章
[Kong, He]的文章
必应学术
必应学术中相似的文章
[Kong, He]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。