题名 | Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose |
作者 | |
发表日期 | 2023-12-01
|
DOI | |
发表期刊 | |
ISSN | 1884-4049
|
EISSN | 1884-4057
|
卷号 | 15期号:1 |
摘要 | High-performance functional fibers play a critical role in various indispensable fields, including sensing, monitoring, and display. It is desirable yet challenging to develop conductive fibers with excellent mechanical properties for practical applications. Herein, inspired by the exquisite fascicle structure of skeletal muscle, we constructed a high-performance bacterial cellulose (BC)/carbon nanotube (CNT) conductive fiber through in situ biosynthesis and enhancement of structure and interaction. The biosynthesis strategy achieves the in situ entanglement of CNTs in the three-dimensional network of BC through the deposition of CNTs during the growth of BC. The structure enhancement through physical wet drawing and the interaction enhancement through chemical treatment facilitate orientation and bridging of components, respectively. Owing to the ingenious design, the obtained composite fibers integrate high strength (939 MPa), high stiffness (52.3 GPa), high fatigue resistance, and stable electrical performance, making them competitive for constructing fiber-based smart devices for practical applications. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China-Yunnan Joint Fund[22105194];National Natural Science Foundation of China-Yunnan Joint Fund[51732011];
|
WOS研究方向 | Materials Science
|
WOS类目 | Materials Science, Multidisciplinary
|
WOS记录号 | WOS:000961042000004
|
出版者 | |
EI入藏号 | 20231713954282
|
EI主题词 | Biochemistry
; Carbon nanotubes
; Cellulose
; Fatigue of materials
; Fibers
; Muscle
|
EI分类号 | Biological Materials and Tissue Engineering:461.2
; Biotechnology:461.8
; Nanotechnology:761
; Biochemistry:801.2
; Chemical Reactions:802.2
; Cellulose, Lignin and Derivatives:811.3
; Organic Polymers:815.1.1
; Crystalline Solids:933.1
; Materials Science:951
|
Scopus记录号 | 2-s2.0-85153102224
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536378 |
专题 | 理学院_化学系 工学院_材料科学与工程系 |
作者单位 | 1.Department of Chemistry,Institute of Biomimetic Materials & Chemistry,Anhui Engineering Laboratory of Biomimetic Materials,Division of Nanomaterials & Chemistry,Hefei National Research Center for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei,China 2.Institute of Innovative Materials,Department of Materials Science and Engineering,Department of Chemistry,USTC-SUSTech Joint Research Center for Advanced Materials,Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Ling,Zhang Chi,Yang,Huai Bin,Han,Zi Meng,et al. Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose[J]. NPG Asia Materials,2023,15(1).
|
APA |
Ling,Zhang Chi.,Yang,Huai Bin.,Han,Zi Meng.,Zhou,Zhan.,Yang,Kun Peng.,...&Yu,Shu Hong.(2023).Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose.NPG Asia Materials,15(1).
|
MLA |
Ling,Zhang Chi,et al."Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose".NPG Asia Materials 15.1(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论