中文版 | English
题名

Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose

作者
发表日期
2023-12-01
DOI
发表期刊
ISSN
1884-4049
EISSN
1884-4057
卷号15期号:1
摘要
High-performance functional fibers play a critical role in various indispensable fields, including sensing, monitoring, and display. It is desirable yet challenging to develop conductive fibers with excellent mechanical properties for practical applications. Herein, inspired by the exquisite fascicle structure of skeletal muscle, we constructed a high-performance bacterial cellulose (BC)/carbon nanotube (CNT) conductive fiber through in situ biosynthesis and enhancement of structure and interaction. The biosynthesis strategy achieves the in situ entanglement of CNTs in the three-dimensional network of BC through the deposition of CNTs during the growth of BC. The structure enhancement through physical wet drawing and the interaction enhancement through chemical treatment facilitate orientation and bridging of components, respectively. Owing to the ingenious design, the obtained composite fibers integrate high strength (939 MPa), high stiffness (52.3 GPa), high fatigue resistance, and stable electrical performance, making them competitive for constructing fiber-based smart devices for practical applications.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China-Yunnan Joint Fund[22105194];National Natural Science Foundation of China-Yunnan Joint Fund[51732011];
WOS研究方向
Materials Science
WOS类目
Materials Science, Multidisciplinary
WOS记录号
WOS:000961042000004
出版者
EI入藏号
20231713954282
EI主题词
Biochemistry ; Carbon nanotubes ; Cellulose ; Fatigue of materials ; Fibers ; Muscle
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Biotechnology:461.8 ; Nanotechnology:761 ; Biochemistry:801.2 ; Chemical Reactions:802.2 ; Cellulose, Lignin and Derivatives:811.3 ; Organic Polymers:815.1.1 ; Crystalline Solids:933.1 ; Materials Science:951
Scopus记录号
2-s2.0-85153102224
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536378
专题理学院_化学系
工学院_材料科学与工程系
作者单位
1.Department of Chemistry,Institute of Biomimetic Materials & Chemistry,Anhui Engineering Laboratory of Biomimetic Materials,Division of Nanomaterials & Chemistry,Hefei National Research Center for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei,China
2.Institute of Innovative Materials,Department of Materials Science and Engineering,Department of Chemistry,USTC-SUSTech Joint Research Center for Advanced Materials,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Ling,Zhang Chi,Yang,Huai Bin,Han,Zi Meng,et al. Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose[J]. NPG Asia Materials,2023,15(1).
APA
Ling,Zhang Chi.,Yang,Huai Bin.,Han,Zi Meng.,Zhou,Zhan.,Yang,Kun Peng.,...&Yu,Shu Hong.(2023).Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose.NPG Asia Materials,15(1).
MLA
Ling,Zhang Chi,et al."Ultrastrong and fatigue-resistant bioinspired conductive fibers via the in situ biosynthesis of bacterial cellulose".NPG Asia Materials 15.1(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ling,Zhang Chi]的文章
[Yang,Huai Bin]的文章
[Han,Zi Meng]的文章
百度学术
百度学术中相似的文章
[Ling,Zhang Chi]的文章
[Yang,Huai Bin]的文章
[Han,Zi Meng]的文章
必应学术
必应学术中相似的文章
[Ling,Zhang Chi]的文章
[Yang,Huai Bin]的文章
[Han,Zi Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。