中文版 | English
题名

Fast SVM classifier for large-scale classification problems

作者
通讯作者Wang,Huajun
发表日期
2023-09-01
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号642
摘要
Support vector machines (SVM), as one of effective and popular classification tools, have been widely applied in various fields. However, they may incur prohibitive computational costs when solving large-scale classification problems. To address this problem, we construct a new fast SVM with a truncated squared hinge loss (dubbed as L-SVM). We begin by developing an optimality theory of the nonconvex and nonsmooth L-SVM, which makes it convenient for us to investigate the support vectors and working set of L-SVM. Based on this, we propose a new and effective global convergence algorithm to address the L-SVM. This method is found to enjoy a tremendously low computational complexity, which makes sufficiently decreasing the demand for extremely large-scale computation possible. Numerical comparisons with eight other solvers show that our proposed algorithm achieves excellent performance on large-scale classification problems with regard to shorter computational times, more desirable accuracy levels, fewer support vectors and more robust to outliers.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[11871183];National Natural Science Foundation of China[11971052];National Natural Science Foundation of China[62106096];National Natural Science Foundation of China[62206120];
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:001013595800001
出版者
EI入藏号
20232214164989
EI主题词
Computational complexity ; Vectors
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Computer Software, Data Handling and Applications:723 ; Algebra:921.1
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85160353917
来源库
Scopus
引用统计
被引频次[WOS]:24
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536398
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.Department of Mathematics and Statistics,Changsha University of Science and Technology,Changsha,China
2.School of System Design and Intelligent Manufacturing,Southern University of Science and Technology,Shenzhen,China
3.School of System Design and Intelligent Manufacturing,the Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Wang,Huajun,Li,Genghui,Wang,Zhenkun. Fast SVM classifier for large-scale classification problems[J]. Information Sciences,2023,642.
APA
Wang,Huajun,Li,Genghui,&Wang,Zhenkun.(2023).Fast SVM classifier for large-scale classification problems.Information Sciences,642.
MLA
Wang,Huajun,et al."Fast SVM classifier for large-scale classification problems".Information Sciences 642(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Huajun]的文章
[Li,Genghui]的文章
[Wang,Zhenkun]的文章
百度学术
百度学术中相似的文章
[Wang,Huajun]的文章
[Li,Genghui]的文章
[Wang,Zhenkun]的文章
必应学术
必应学术中相似的文章
[Wang,Huajun]的文章
[Li,Genghui]的文章
[Wang,Zhenkun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。