中文版 | English
题名

Predictive capabilities of data-driven machine learning techniques on wave-bridge interactions

作者
通讯作者Dong,You
发表日期
2023-08-01
DOI
发表期刊
ISSN
0141-1187
EISSN
1879-1549
卷号137
摘要
To explore coastal bridge safety subjected to extreme waves during coastal natural hazards, numerical simulations that combine finite element methods and experimental data have been recognized as effective in computing wave-induced loads on coastal bridges. However, the structural design and performance assessment for bridge networks require laborious efforts and massive computational resources to account for uncertain scenarios. To provide reliable wave force estimation tools and facilitate the associated risk assessment, this study performs a hydrodynamic experiment on the wave-bridge interactions and develops data-driven Long-Short-Term-Memory (LSTM) Machine Learning (ML) models for time series forecasting of wave forces. Specifically, a 1:30 scale bridge superstructure specimen is used for the wave test in the wave channel. Different solitary wave and regular wave conditions are tested. Time histories of wave profiles, wave-induced forces, and pressures are measured and served as a dataset basis for the training of LSTM models. High-performance LSTM prediction models are developed through the tuning of different hyperparameters. The well-trained models have high accuracy and could predict the wave force time series based on the excitation wave profiles in seconds. It is envisioned that LSTM models could provide more reliable estimations with the development based on more data sources, providing a fast path for structural design, analysis, and maintenance.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Research Grants Council of Hong Kong["PolyU 15225722","PolyU 15221521"] ; Department of Civil and Environmental Engineering of the Hong Kong Polytechnic University[1-WZ0B]
WOS研究方向
Engineering ; Oceanography
WOS类目
Engineering, Ocean ; Oceanography
WOS记录号
WOS:001011017400001
出版者
EI入藏号
20232214170355
EI主题词
Forecasting ; Hydrodynamics ; Numerical methods ; Risk assessment ; Risk perception ; Solitons ; Structural design ; Time series
EI分类号
Structural Design, General:408.1 ; Accidents and Accident Prevention:914.1 ; Numerical Methods:921.6 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85160416867
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536421
专题工学院_海洋科学与工程系
作者单位
1.Department of Civil and Environmental Engineering,The Hong Kong Polytechnic University,Hong Kong,Hong Kong
2.Department of Ocean Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.Research Institute for Sustainable Urban Development,The Hong Kong Polytechnic University,Hong Kong,Hong Kong
4.Laboratory of Engineering Sciences for the Environment (LaSIE - UMR CNRS 7356),La Rochelle University,La Rochelle,France
推荐引用方式
GB/T 7714
Zhu,Deming,Zhang,Jiaxin,Wu,Qian,et al. Predictive capabilities of data-driven machine learning techniques on wave-bridge interactions[J]. Applied Ocean Research,2023,137.
APA
Zhu,Deming,Zhang,Jiaxin,Wu,Qian,Dong,You,&Bastidas-Arteaga,Emilio.(2023).Predictive capabilities of data-driven machine learning techniques on wave-bridge interactions.Applied Ocean Research,137.
MLA
Zhu,Deming,et al."Predictive capabilities of data-driven machine learning techniques on wave-bridge interactions".Applied Ocean Research 137(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu,Deming]的文章
[Zhang,Jiaxin]的文章
[Wu,Qian]的文章
百度学术
百度学术中相似的文章
[Zhu,Deming]的文章
[Zhang,Jiaxin]的文章
[Wu,Qian]的文章
必应学术
必应学术中相似的文章
[Zhu,Deming]的文章
[Zhang,Jiaxin]的文章
[Wu,Qian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。