中文版 | English
题名

Morphology identification of gas hydrate based on a machine learning method and its applications on saturation estimation

作者
发表日期
2023-08-01
DOI
发表期刊
ISSN
0956-540X
EISSN
1365-246X
卷号234期号:2页码:1307-1325
摘要

Proper identification of hydrate morphology is an essential pre-condition for the quantification and exploitation of gas hydrate resources. However, the morphology results from core-based analysis and resistivity-based imaging could be discontinuous in hydrate-bearing intervals. Rock physical model-based methods could predict morphology within complete hydrate-bearing intervals, but the accuracy is not much satisfactory in some cases. In this study, we propose a machine learning (ML) method using the wavelet twin support vector machine (WTWSVM) to accurately differentiate the pore-filling and grain-displacing hydrate. By employing different combinations of well logs as the inputs of the WTWSVM, we find the optimal one for the data set in Hydrate Ridge, offshore Oregon is the combination of gamma-ray, resistivity, compressional and shear wave velocity logs, with an accuracy of 88.6 per cent and F1-score of 82.89 per cent. Compared with the two traditional rock-physics-based methods and three typical ML algorithms, the WTWSVM with those optimal inputs performs better in terms of accuracy and F1-score. We then use the WTWSVM to predict the hydrate morphology in the hydrate-bearing intervals at an unlabelled (i.e. unidentified hydrate morphology) site 1250F and a partially labelled (i.e. only a portion of the hydrate and its morphology is identified by IR images) site 1247B at Hydrate Ridge. Finally, the hydrate-morphology-related rock physics models are employed to construct 3-D crossplots of density, compressional and shear wave velocity, on which hydrate concentration, as well as other reservoir parameters, are estimated through projecting. The proposed WTWSVM method and workflow are proved to be valid based on the good agreement between the reservoir parameters from core measurement and elastic properties.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000971177200007
出版者
EI入藏号
20232214153733
EI主题词
Acoustic wave velocity ; Gamma rays ; Gas hydrates ; Hydration ; Infrared imaging ; Offshore oil well production ; Parameter estimation ; Shear flow ; Shear waves ; Support vector machines ; Wave propagation
EI分类号
Oil Field Production Operations:511.1 ; Natural Gas Deposits:512.2 ; Gas Fuels:522 ; Fluid Flow, General:631.1 ; Computer Software, Data Handling and Applications:723 ; Imaging Techniques:746 ; Acoustic Waves:751.1 ; Mechanics:931.1 ; Physical Properties of Gases, Liquids and Solids:931.2 ; Atomic and Molecular Physics:931.3 ; High Energy Physics:932.1 ; Materials Science:951
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536425
专题理学院_地球与空间科学系
作者单位
1.School of Geophysics and Information Technology,China University of Geosciences,Beijing,100083,China
2.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China
3.Geological Survey Institute of Shanxi Province,Taiyuan,030000,China
推荐引用方式
GB/T 7714
Zhu,Xiangyu,Liu,Tao,Ma,Shuai,et al. Morphology identification of gas hydrate based on a machine learning method and its applications on saturation estimation[J]. Geophysical Journal International,2023,234(2):1307-1325.
APA
Zhu,Xiangyu,Liu,Tao,Ma,Shuai,Liu,Xuewei,&Li,Anyu.(2023).Morphology identification of gas hydrate based on a machine learning method and its applications on saturation estimation.Geophysical Journal International,234(2),1307-1325.
MLA
Zhu,Xiangyu,et al."Morphology identification of gas hydrate based on a machine learning method and its applications on saturation estimation".Geophysical Journal International 234.2(2023):1307-1325.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu,Xiangyu]的文章
[Liu,Tao]的文章
[Ma,Shuai]的文章
百度学术
百度学术中相似的文章
[Zhu,Xiangyu]的文章
[Liu,Tao]的文章
[Ma,Shuai]的文章
必应学术
必应学术中相似的文章
[Zhu,Xiangyu]的文章
[Liu,Tao]的文章
[Ma,Shuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。