中文版 | English
题名

Finite-time peak-to-peak analysis for switched generalized neural networks comprised of finite-time unstable subnetworks

作者
通讯作者Zhao,Ying
发表日期
2023-07-01
DOI
发表期刊
ISSN
0960-0779
EISSN
1873-2887
卷号172
摘要
This research is concerned with finite-time stability and peak-to-peak performance analysis for the discrete-time switched generalized neural networks (SGNNs) with time-varying delay. Compared with the reported results, each individual subnetwork of the SGNNs is considered to be finite-time unstable in the present study. To accomplish the anticipatory objective, the quasi-time-dependent Lyapunov–Krasovskii functional is constructed, and the associated sufficient conditions are simultaneously formulated to confirm that the disturbance-free SGNNs are finite-time stable when the subnetwork satisfies a certain switching time interval. In addition, a prescribed disturbance attenuation level is also achieved for the perturbed SGNNs in the sense of peak-to-peak performance. Finally, the provided simulation example corroborates the effectiveness and applicability of the established finite-time analysis framework in the absence of finite-time stable subnetworks.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Natural Science Foundation of Liaoning Province[2023-BS-073];Natural Science Foundation of Liaoning Province[2023-MS-120];Fundamental Research Funds for the Central Universities[3132023105];National Natural Science Foundation of China[61973060];National Natural Science Foundation of China[62003070];National Natural Science Foundation of China[62203080];National Natural Science Foundation of China[62273068];
WOS研究方向
Mathematics ; Physics
WOS类目
Mathematics, Interdisciplinary Applications ; Physics, Multidisciplinary ; Physics, Mathematical
WOS记录号
WOS:001018396200001
出版者
EI入藏号
20232214166476
EI分类号
Mathematics:921
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85160327050
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536451
专题工学院_系统设计与智能制造学院
作者单位
1.College of Marine Electrical Engineering,Dalian Maritime University,Dalian,116026,China
2.School of Mathematics and Statistics,Fuzhou University,Fuzhou,350108,China
3.Center for Control Science and Technology,Southern University of Science and Technology,Shenzhen,518055,China
4.Doctoral School FEIT,SS Cyril and Methodius University,Skopje,1000,North Macedonia
推荐引用方式
GB/T 7714
Sang,Hong,Zhao,Ying,Wang,Peng,et al. Finite-time peak-to-peak analysis for switched generalized neural networks comprised of finite-time unstable subnetworks[J]. Chaos, Solitons and Fractals,2023,172.
APA
Sang,Hong,Zhao,Ying,Wang,Peng,Wang,Yuzhong,Yu,Shuanghe,&Dimirovski,Georgi M..(2023).Finite-time peak-to-peak analysis for switched generalized neural networks comprised of finite-time unstable subnetworks.Chaos, Solitons and Fractals,172.
MLA
Sang,Hong,et al."Finite-time peak-to-peak analysis for switched generalized neural networks comprised of finite-time unstable subnetworks".Chaos, Solitons and Fractals 172(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sang,Hong]的文章
[Zhao,Ying]的文章
[Wang,Peng]的文章
百度学术
百度学术中相似的文章
[Sang,Hong]的文章
[Zhao,Ying]的文章
[Wang,Peng]的文章
必应学术
必应学术中相似的文章
[Sang,Hong]的文章
[Zhao,Ying]的文章
[Wang,Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。