中文版 | English
题名

Deep learning based closed-loop well control optimization of geothermal reservoir with uncertain permeability

作者
通讯作者Chang,Haibin; Zhang,Dongxiao
发表日期
2023-07-01
DOI
发表期刊
ISSN
0960-1481
EISSN
1879-0682
卷号211页码:379-394
摘要
To maximize the economic benefits of geothermal energy production, it is essential to optimize geothermal reservoir management strategies, in which geologic uncertainty should be considered. In this work, we propose a closed-loop optimization framework, based on deep learning surrogates, for the well control optimization of geothermal reservoirs. In this framework, we construct a hybrid convolution–recurrent neural network surrogate, which combines the convolution neural network (CNN) and long short-term memory (LSTM) recurrent network. The convolution structure can extract spatial information of reservoir property fields and the recurrent structure can approximate sequence-to-sequence mapping. The trained model can predict time-varying production responses (rate, temperature, etc.) for cases with different permeability fields and well control sequences. In this closed-loop optimization framework, production optimization, based on the differential evolution (DE) algorithm, and data assimilation, based on the iterative ensemble smoother (IES), are performed alternately to achieve a real-time well control optimization and to estimate reservoir properties (e.g. permeability) as the production proceeds. In addition, the averaged objective function over the ensemble of geologic parameter estimates is adopted to consider geologic uncertainty in the optimization process. Geothermal reservoir production cases are examined to evaluate the performance of the proposed closed-loop optimization framework. Our results show that the proposed framework can achieve efficient and effective real-time optimization and data assimilation in the geothermal reservoir production process.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
China Scholarship Council scholarship[202106010163] ; Shenzhen Key Laboratory of Natural Gas Hydrates[ZDSYS20200421111201738]
WOS研究方向
Science & Technology - Other Topics ; Energy & Fuels
WOS类目
Green & Sustainable Science & Technology ; Energy & Fuels
WOS记录号
WOS:001003879700001
出版者
EI入藏号
20231914066247
EI主题词
Convolution ; Evolutionary algorithms ; Geothermal fields ; Long short-term memory ; Optimization ; Reservoir management ; Uncertainty analysis
EI分类号
Geothermal Phenomena:481.3.1 ; Petroleum Deposits : Development Operations:512.1.2 ; Geothermal Energy:615.1 ; Information Theory and Signal Processing:716.1 ; Optimization Techniques:921.5 ; Numerical Methods:921.6 ; Probability Theory:922.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85158046797
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536463
专题理学院_深圳国家应用数学中心
作者单位
1.BIC-ESAT,ERE,and SKLTCS,College of Engineering,Peking University,Beijing,100871,China
2.Geothermal Energy and Geofluids Group,Institute of Geophysics,ETH Zurich,Zurich,Sonneggstrasse 5,8092,Switzerland
3.School of Energy and Mining Engineering,China University of Mining and Technology (Beijing),Beijing,100083,China
4.Eastern Institute for Advanced Study,Eastern Institute of Technology,NingboZhejiang,315200,China
5.National Center for Applied Mathematics Shenzhen (NCAMS),Southern University of Science and Technology,ShenzhenGuangdong,518000,China
通讯作者单位深圳国家应用数学中心
推荐引用方式
GB/T 7714
Wang,Nanzhe,Chang,Haibin,Kong,Xiang Zhao,et al. Deep learning based closed-loop well control optimization of geothermal reservoir with uncertain permeability[J]. Renewable Energy,2023,211:379-394.
APA
Wang,Nanzhe,Chang,Haibin,Kong,Xiang Zhao,&Zhang,Dongxiao.(2023).Deep learning based closed-loop well control optimization of geothermal reservoir with uncertain permeability.Renewable Energy,211,379-394.
MLA
Wang,Nanzhe,et al."Deep learning based closed-loop well control optimization of geothermal reservoir with uncertain permeability".Renewable Energy 211(2023):379-394.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Kong,Xiang Zhao]的文章
百度学术
百度学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Kong,Xiang Zhao]的文章
必应学术
必应学术中相似的文章
[Wang,Nanzhe]的文章
[Chang,Haibin]的文章
[Kong,Xiang Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。