题名 | On simplified deformation gradient theory of modified gradient elastic Kirchhoff–Love plate |
作者 | |
通讯作者 | Huang,Kefu |
发表日期 | 2023-07-01
|
DOI | |
发表期刊 | |
ISSN | 0997-7538
|
EISSN | 1873-7285
|
卷号 | 100 |
摘要 | A concise modified gradient elastic Kirchhoff–Love plate model with two length-scale parameters is proposed based on simplified deformation gradient theory. A sixth-order basic differential equation and boundary conditions applicable to arbitrary shapes are obtained by applying the principle of minimum potential energy and combining with the generalized strain energy related to classical strain, strain gradient and rotation gradient. By introducing couple stress, the classical bending stiffness corresponding to the fourth-order terms and force-related boundary conditions in the typical gradient elastic Kirchhoff–Love plate model are modified, and the bending deformation of thin plates can be described more flexibly. Under certain conditions, the modified gradient elastic Kirchhoff–Love plate model can be reduced to typical gradient elastic thin plate model, couple stress thin plate model and classical Kirchhoff–Love plate model. The bending boundary value problems of gradient elastic thin plates are further studied, and the specific modified classical boundary conditions and non-classical higher-order boundary condition acceptable to the sixth-order basic equation in Cartesian coordinates are derived. The analytical and numerical bending solutions to gradient Navier-type and Levy-type thin plates with various boundary conditions, including simply supported, clamped and free boundaries are presented, and the size-dependent bending stiffness that is jointly determined by geometric dimensions and length-scale parameters is defined to describe the size effect of thin plates comprehensively. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | null[11521202]
|
WOS研究方向 | Mechanics
|
WOS类目 | Mechanics
|
WOS记录号 | WOS:001053019700001
|
出版者 | |
EI入藏号 | 20231914059610
|
EI主题词 | Bending (deformation)
; Boundary value problems
; Potential energy
; Stiffness
; Strain energy
|
EI分类号 | Mechanics:931.1
; Materials Science:951
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85156221578
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536464 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,1088 Xueyuan Boulevard, Guangdong,518055,China |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Zhou,Yucheng,Huang,Kefu. On simplified deformation gradient theory of modified gradient elastic Kirchhoff–Love plate[J]. European Journal of Mechanics, A/Solids,2023,100.
|
APA |
Zhou,Yucheng,&Huang,Kefu.(2023).On simplified deformation gradient theory of modified gradient elastic Kirchhoff–Love plate.European Journal of Mechanics, A/Solids,100.
|
MLA |
Zhou,Yucheng,et al."On simplified deformation gradient theory of modified gradient elastic Kirchhoff–Love plate".European Journal of Mechanics, A/Solids 100(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论