题名 | Polymer-Unit Fingerprint (PUFp): An Accessible Expression of Polymer Organic Semiconductors for Machine Learning |
作者 | |
通讯作者 | Zhang,Wenqing; Ye,Caichao |
发表日期 | 2023-05-03
|
DOI | |
发表期刊 | |
ISSN | 1944-8244
|
EISSN | 1944-8252
|
卷号 | 15期号:17页码:21537-21548 |
摘要 | High-performance organic semiconductors (OSCs) can be designed based on the identification of functional units and their role in the material properties. Herein, we present a polymer-unit fingerprint (PUFp) generation framework, “Python-based polymer-unit-recognition script” (PURS), to identify the subunits “polymer unit” in the polymer and generate polymer-unit fingerprint (PUFp). Using 678 collected OSC data, machine learning (ML) models can be used to determine structure-mobility relationships by using PUFp as a structural input, and the classification accuracy reaches 85.2%. A polymer-unit library consisting of 445 units is constructed, and the key polymer units affecting the mobility of OSCs are identified. By investigating the combinations of polymer units with mobility performance, a scheme for designing OSCs by combining ML approaches and PUFp information is proposed. This scheme not only passively predicts OSC mobility but also actively provides structural guidance for high-mobility OSC material design. The proposed scheme demonstrates the ability to screen materials through pre-evaluation and classification ML steps and is an alternative methodology for applying ML in high-mobility OSC discovery. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Natural Science Foundation of China[92163212]
; Guangdong Basic and Applied Basic Research Foundation[2022A1515110628]
; Guangdong Provincial Key Laboratory of Computational Science and Material Design[2019B030301001]
; Funda-mental Research Program of Shenzhen[JCYJ20190809174203802]
; Key Research Project of Zhejiang Lab[2021PE0AC02]
; Guangdong Innovation Research Team Project[2017ZT07C062]
; Guangdong Major Talent Project Introduction Category[2019CX01C237]
|
WOS研究方向 | Science & Technology - Other Topics
; Materials Science
|
WOS类目 | Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
|
WOS记录号 | WOS:000979383500001
|
出版者 | |
EI入藏号 | 20231814040064
|
EI分类号 | Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85154019691
|
来源库 | Scopus
|
出版状态 | 正式出版
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536533 |
专题 | 工学院_材料科学与工程系 理学院_物理系 前沿与交叉科学研究院 |
作者单位 | 1.Department of Materials Science and Engineering & Guangdong Provincial Key Laboratory of Computational Science and Material Design,Southern University of Science and Technology,Shenzhen,518055,China 2.Academy for Advanced Interdisciplinary Studies & Department of Physics,Southern University of Science and Technology,Shenzhen,518055,China 3.Materials Genome Institute,Shanghai University,Shanghai,200444,China 4.Zhejiang Laboratory,Hangzhou,311100,China |
第一作者单位 | 材料科学与工程系; 物理系; 前沿与交叉科学研究院 |
通讯作者单位 | 材料科学与工程系; 物理系; 前沿与交叉科学研究院 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Xinyue,Wei,Genwang,Sheng,Ye,et al. Polymer-Unit Fingerprint (PUFp): An Accessible Expression of Polymer Organic Semiconductors for Machine Learning[J]. ACS Applied Materials and Interfaces,2023,15(17):21537-21548.
|
APA |
Zhang,Xinyue.,Wei,Genwang.,Sheng,Ye.,Bai,Wenjun.,Yang,Jiong.,...&Ye,Caichao.(2023).Polymer-Unit Fingerprint (PUFp): An Accessible Expression of Polymer Organic Semiconductors for Machine Learning.ACS Applied Materials and Interfaces,15(17),21537-21548.
|
MLA |
Zhang,Xinyue,et al."Polymer-Unit Fingerprint (PUFp): An Accessible Expression of Polymer Organic Semiconductors for Machine Learning".ACS Applied Materials and Interfaces 15.17(2023):21537-21548.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
54. PUFp_acsami.3c03(8315KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论