题名 | Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation |
作者 | |
通讯作者 | Tam,Roger; Tang,Xiaoying |
发表日期 | 2023-05-01
|
DOI | |
发表期刊 | |
EISSN | 2075-4418
|
卷号 | 13期号:10 |
摘要 | Although deep learning-based diabetic retinopathy (DR) classification methods typically benefit from well-designed architectures of convolutional neural networks, the training setting also has a non-negligible impact on prediction performance. The training setting includes various interdependent components, such as an objective function, a data sampling strategy, and a data augmentation approach. To identify the key components in a standard deep learning framework (ResNet-50) for DR grading, we systematically analyze the impact of several major components. Extensive experiments are conducted on a publicly available dataset EyePACS. We demonstrate that (1) the DR grading framework is sensitive to input resolution, objective function, and composition of data augmentation; (2) using mean square error as the loss function can effectively improve the performance with respect to a task-specific evaluation metric, namely the quadratically weighted Kappa; (3) utilizing eye pairs boosts the performance of DR grading and; (4) using data resampling to address the problem of imbalanced data distribution in EyePACS hurts the performance. Based on these observations and an optimal combination of the investigated components, our framework, without any specialized network design, achieves a state-of-the-art result (0.8631 for Kappa) on the EyePACS test set (a total of 42,670 fundus images) with only image-level labels. We also examine the proposed training practices on other fundus datasets and other network architectures to evaluate their generalizability. Our codes and pre-trained model are available online. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[62071210];Shenzhen Science and Technology Innovation Program[RCYX20210609103056042];
|
WOS研究方向 | General & Internal Medicine
|
WOS类目 | Medicine, General & Internal
|
WOS记录号 | WOS:000997274100001
|
出版者 | |
Scopus记录号 | 2-s2.0-85160530116
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536539 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.School of Biomedical Engineering,The University of British Columbia,Vancouver,V6T 1Z4,Canada 3.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong 4.Queensland Brain Institute,The University of Queensland,Brisbane,4072,Australia |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Huang,Yijin,Lin,Li,Cheng,Pujin,et al. Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation[J]. Diagnostics,2023,13(10).
|
APA |
Huang,Yijin,Lin,Li,Cheng,Pujin,Lyu,Junyan,Tam,Roger,&Tang,Xiaoying.(2023).Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation.Diagnostics,13(10).
|
MLA |
Huang,Yijin,et al."Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation".Diagnostics 13.10(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论