中文版 | English
题名

Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation

作者
通讯作者Tam,Roger; Tang,Xiaoying
发表日期
2023-05-01
DOI
发表期刊
EISSN
2075-4418
卷号13期号:10
摘要
Although deep learning-based diabetic retinopathy (DR) classification methods typically benefit from well-designed architectures of convolutional neural networks, the training setting also has a non-negligible impact on prediction performance. The training setting includes various interdependent components, such as an objective function, a data sampling strategy, and a data augmentation approach. To identify the key components in a standard deep learning framework (ResNet-50) for DR grading, we systematically analyze the impact of several major components. Extensive experiments are conducted on a publicly available dataset EyePACS. We demonstrate that (1) the DR grading framework is sensitive to input resolution, objective function, and composition of data augmentation; (2) using mean square error as the loss function can effectively improve the performance with respect to a task-specific evaluation metric, namely the quadratically weighted Kappa; (3) utilizing eye pairs boosts the performance of DR grading and; (4) using data resampling to address the problem of imbalanced data distribution in EyePACS hurts the performance. Based on these observations and an optimal combination of the investigated components, our framework, without any specialized network design, achieves a state-of-the-art result (0.8631 for Kappa) on the EyePACS test set (a total of 42,670 fundus images) with only image-level labels. We also examine the proposed training practices on other fundus datasets and other network architectures to evaluate their generalizability. Our codes and pre-trained model are available online.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62071210];Shenzhen Science and Technology Innovation Program[RCYX20210609103056042];
WOS研究方向
General & Internal Medicine
WOS类目
Medicine, General & Internal
WOS记录号
WOS:000997274100001
出版者
Scopus记录号
2-s2.0-85160530116
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536539
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.School of Biomedical Engineering,The University of British Columbia,Vancouver,V6T 1Z4,Canada
3.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong
4.Queensland Brain Institute,The University of Queensland,Brisbane,4072,Australia
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Huang,Yijin,Lin,Li,Cheng,Pujin,et al. Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation[J]. Diagnostics,2023,13(10).
APA
Huang,Yijin,Lin,Li,Cheng,Pujin,Lyu,Junyan,Tam,Roger,&Tang,Xiaoying.(2023).Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation.Diagnostics,13(10).
MLA
Huang,Yijin,et al."Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation".Diagnostics 13.10(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang,Yijin]的文章
[Lin,Li]的文章
[Cheng,Pujin]的文章
百度学术
百度学术中相似的文章
[Huang,Yijin]的文章
[Lin,Li]的文章
[Cheng,Pujin]的文章
必应学术
必应学术中相似的文章
[Huang,Yijin]的文章
[Lin,Li]的文章
[Cheng,Pujin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。