题名 | Multiple Voronoi Partition Improves Multimodal Dispersion Imaging From Ambient Noise: A Case Study of LASSO Dense Array |
作者 | |
通讯作者 | Li,Zhengbo; Chen,Xiaofei |
发表日期 | 2023-05-01
|
DOI | |
发表期刊 | |
ISSN | 2169-9313
|
EISSN | 2169-9356
|
卷号 | 128期号:5 |
摘要 | Recent studies on the frequency-Bessel transform (F-J) method demonstrate the ability of the array-based method to extract higher-mode surface wave dispersion curves from ambient noise, which provides a new opportunity to reveal more accurate underground structures. However, problems with the subarray selection for three-dimensional imaging remain. On the one hand, we need the subarray to be large enough such that the F-J method can capture high-quality dispersion curves, and on the other hand, we want the subarray to be small enough to maintain a sufficient horizontal resolution. To solve this problem, we propose a strategy that randomly and repeatedly partitions the subarray based on Voronoi diagrams. We call this the FJ-VoroTomo method. The FJ-VoroTomo method does not require tedious parameter tuning and can measure high-quality dispersion while maintaining horizontal resolution. More importantly, this method can quantitatively analyze the uncertainty of the measured dispersion curves. In this work, we use the noise cross-correlation functions from the LArge-n Seismic Survey in Oklahoma array as an example to demonstrate the dispersion and its uncertainty obtained by the FJ-VoroTomo method and evaluate the three-dimensional S wave velocity structure beneath this dense array. We hope that by using this strategy, the multimodal surface wave method can be more feasible in dense arrays that are currently widely used. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 第一
; 通讯
|
资助项目 | Leading Talents Program of Guangdong Province[2016LJ06N652]
; National Natural Science Foundation of China[41974044]
; National Natural Science Foundation of China[42104048]
; National Natural Science Foundation of China[92155307]
|
WOS研究方向 | Geochemistry & Geophysics
|
WOS类目 | Geochemistry & Geophysics
|
WOS记录号 | WOS:001000305300001
|
出版者 | |
ESI学科分类 | GEOSCIENCES
|
Scopus记录号 | 2-s2.0-85160449207
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536545 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology,Southern University of Science and Technology,Shenzhen,China 2.Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology,Southern University of Science and Technology,Shenzhen,China 3.Department of Earth and Space Science,Southern University of Science and Technology,Shenzhen,China 4.School of Earth and Space Sciences,University of Science and Technology of China,Hefei,China 5.Hubei Subsurface Multi-scale Imaging Key Laboratory,School of Geophysics and Geomatics,China University of Geosciences,Wuhan,China |
第一作者单位 | 南方科技大学; 地球与空间科学系 |
通讯作者单位 | 南方科技大学; 地球与空间科学系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Li,Zhengbo,Dong,Sheng,Shi,Caiwang,et al. Multiple Voronoi Partition Improves Multimodal Dispersion Imaging From Ambient Noise: A Case Study of LASSO Dense Array[J]. Journal of Geophysical Research: Solid Earth,2023,128(5).
|
APA |
Li,Zhengbo.,Dong,Sheng.,Shi,Caiwang.,Fu,Lei.,Pan,Lei.,...&Chen,Xiaofei.(2023).Multiple Voronoi Partition Improves Multimodal Dispersion Imaging From Ambient Noise: A Case Study of LASSO Dense Array.Journal of Geophysical Research: Solid Earth,128(5).
|
MLA |
Li,Zhengbo,et al."Multiple Voronoi Partition Improves Multimodal Dispersion Imaging From Ambient Noise: A Case Study of LASSO Dense Array".Journal of Geophysical Research: Solid Earth 128.5(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论