中文版 | English
题名

Multiple Voronoi Partition Improves Multimodal Dispersion Imaging From Ambient Noise: A Case Study of LASSO Dense Array

作者
通讯作者Li,Zhengbo; Chen,Xiaofei
发表日期
2023-05-01
DOI
发表期刊
ISSN
2169-9313
EISSN
2169-9356
卷号128期号:5
摘要

Recent studies on the frequency-Bessel transform (F-J) method demonstrate the ability of the array-based method to extract higher-mode surface wave dispersion curves from ambient noise, which provides a new opportunity to reveal more accurate underground structures. However, problems with the subarray selection for three-dimensional imaging remain. On the one hand, we need the subarray to be large enough such that the F-J method can capture high-quality dispersion curves, and on the other hand, we want the subarray to be small enough to maintain a sufficient horizontal resolution. To solve this problem, we propose a strategy that randomly and repeatedly partitions the subarray based on Voronoi diagrams. We call this the FJ-VoroTomo method. The FJ-VoroTomo method does not require tedious parameter tuning and can measure high-quality dispersion while maintaining horizontal resolution. More importantly, this method can quantitatively analyze the uncertainty of the measured dispersion curves. In this work, we use the noise cross-correlation functions from the LArge-n Seismic Survey in Oklahoma array as an example to demonstrate the dispersion and its uncertainty obtained by the FJ-VoroTomo method and evaluate the three-dimensional S wave velocity structure beneath this dense array. We hope that by using this strategy, the multimodal surface wave method can be more feasible in dense arrays that are currently widely used.

相关链接[Scopus记录]
收录类别
语种
英语
重要成果
NI论文
学校署名
第一 ; 通讯
资助项目
Leading Talents Program of Guangdong Province[2016LJ06N652] ; National Natural Science Foundation of China[41974044] ; National Natural Science Foundation of China[42104048] ; National Natural Science Foundation of China[92155307]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:001000305300001
出版者
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85160449207
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536545
专题理学院_地球与空间科学系
作者单位
1.Shenzhen Key Laboratory of Deep Offshore Oil and Gas Exploration Technology,Southern University of Science and Technology,Shenzhen,China
2.Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology,Southern University of Science and Technology,Shenzhen,China
3.Department of Earth and Space Science,Southern University of Science and Technology,Shenzhen,China
4.School of Earth and Space Sciences,University of Science and Technology of China,Hefei,China
5.Hubei Subsurface Multi-scale Imaging Key Laboratory,School of Geophysics and Geomatics,China University of Geosciences,Wuhan,China
第一作者单位南方科技大学;  地球与空间科学系
通讯作者单位南方科技大学;  地球与空间科学系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Li,Zhengbo,Dong,Sheng,Shi,Caiwang,et al. Multiple Voronoi Partition Improves Multimodal Dispersion Imaging From Ambient Noise: A Case Study of LASSO Dense Array[J]. Journal of Geophysical Research: Solid Earth,2023,128(5).
APA
Li,Zhengbo.,Dong,Sheng.,Shi,Caiwang.,Fu,Lei.,Pan,Lei.,...&Chen,Xiaofei.(2023).Multiple Voronoi Partition Improves Multimodal Dispersion Imaging From Ambient Noise: A Case Study of LASSO Dense Array.Journal of Geophysical Research: Solid Earth,128(5).
MLA
Li,Zhengbo,et al."Multiple Voronoi Partition Improves Multimodal Dispersion Imaging From Ambient Noise: A Case Study of LASSO Dense Array".Journal of Geophysical Research: Solid Earth 128.5(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Zhengbo]的文章
[Dong,Sheng]的文章
[Shi,Caiwang]的文章
百度学术
百度学术中相似的文章
[Li,Zhengbo]的文章
[Dong,Sheng]的文章
[Shi,Caiwang]的文章
必应学术
必应学术中相似的文章
[Li,Zhengbo]的文章
[Dong,Sheng]的文章
[Shi,Caiwang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。