中文版 | English
题名

Statistical Analysis of Electromagnetic Ion Cyclotron Rising-Tone Emissions Based on Deep Learning

作者
通讯作者Liu,Kaijun
发表日期
2023-05-01
DOI
发表期刊
ISSN
2169-9380
EISSN
2169-9402
卷号128期号:5
摘要
Several studies have shown the importance of electromagnetic ion cyclotron (EMIC) rising-tone emissions to the rapid precipitation of energetic radiation belt electrons. Based on a large number of Van Allen Probes observations from October 2012 to July 2019, we identify EMIC rising-tone emissions using a convolutional neural network (CNN), a modern deep learning technique. Results of training indicate that the CNN is capable of identifying EMIC rising-tone emissions with a recall of 99.3%. The statistical analysis of the wave events identified reveals that the average occurrence rate of the events is about 0.016%, with a high occurrence rate from the forenoon to the dusk sector at L > 5. There are also events observed at L < 5, which are scattered at almost all magnetic local times. The events in the hydrogen and helium bands have comparable wave amplitudes on average, but the larger amplitude events tend to occur around noon and in the afternoon sector in the hydrogen and helium bands, respectively. In addition, the frequency sweep rate tends to increase with the wave frequency. The frequency sweep rates of the hydrogen band EMIC rising-tone emissions are about 6 times larger than those of the helium band events. There is also a positive correlation between the wave amplitudes and the sweep rates of the hydrogen band emissions.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[41974168];National Natural Science Foundation of China[42174203];
WOS研究方向
Astronomy & Astrophysics
WOS类目
Astronomy & Astrophysics
WOS记录号
WOS:001000347600001
出版者
ESI学科分类
SPACE SCIENCE
Scopus记录号
2-s2.0-85160419678
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536549
专题理学院_地球与空间科学系
作者单位
Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Wang,Yan,Li,Yilong,Liu,Kaijun,et al. Statistical Analysis of Electromagnetic Ion Cyclotron Rising-Tone Emissions Based on Deep Learning[J]. Journal of Geophysical Research: Space Physics,2023,128(5).
APA
Wang,Yan,Li,Yilong,Liu,Kaijun,Song,Weibin,Xiong,Ying,&Yao,Fei.(2023).Statistical Analysis of Electromagnetic Ion Cyclotron Rising-Tone Emissions Based on Deep Learning.Journal of Geophysical Research: Space Physics,128(5).
MLA
Wang,Yan,et al."Statistical Analysis of Electromagnetic Ion Cyclotron Rising-Tone Emissions Based on Deep Learning".Journal of Geophysical Research: Space Physics 128.5(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Yan]的文章
[Li,Yilong]的文章
[Liu,Kaijun]的文章
百度学术
百度学术中相似的文章
[Wang,Yan]的文章
[Li,Yilong]的文章
[Liu,Kaijun]的文章
必应学术
必应学术中相似的文章
[Wang,Yan]的文章
[Li,Yilong]的文章
[Liu,Kaijun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。