中文版 | English
题名

AutoDenoise: Automatic Data Instance Denoising for Recommendations

作者
通讯作者Zhao,Xiangyu
DOI
发表日期
2023-04-30
会议录名称
页码
1003-1011
摘要
Historical user-item interaction datasets are essential in training modern recommender systems for predicting user preferences. However, the arbitrary user behaviors in most recommendation scenarios lead to a large volume of noisy data instances being recorded, which cannot fully represent their true interests. While a large number of denoising studies are emerging in the recommender system community, all of them suffer from highly dynamic data distributions. In this paper, we propose a Deep Reinforcement Learning (DRL) based framework, AutoDenoise, with an Instance Denoising Policy Network, for denoising data instances with an instance selection manner in deep recommender systems. To be specific, AutoDenoise serves as an agent in DRL to adaptively select noise-free and predictive data instances, which can then be utilized directly in training representative recommendation models. In addition, we design an alternate two-phase optimization strategy to train and validate the AutoDenoise properly. In the searching phase, we aim to train the policy network with the capacity of instance denoising; in the validation phase, we find out and evaluate the denoised subset of data instances selected by the trained policy network, so as to validate its denoising ability. We conduct extensive experiments to validate the effectiveness of AutoDenoise combined with multiple representative recommender system models.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
Scopus记录号
2-s2.0-85159284715
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536587
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.City University of Hong Kong,Hong Kong
2.City University of Hong Kong,Southern University of Science and Technology,Hong Kong
推荐引用方式
GB/T 7714
Lin,Weilin,Zhao,Xiangyu,Wang,Yejing,et al. AutoDenoise: Automatic Data Instance Denoising for Recommendations[C],2023:1003-1011.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Weilin]的文章
[Zhao,Xiangyu]的文章
[Wang,Yejing]的文章
百度学术
百度学术中相似的文章
[Lin,Weilin]的文章
[Zhao,Xiangyu]的文章
[Wang,Yejing]的文章
必应学术
必应学术中相似的文章
[Lin,Weilin]的文章
[Zhao,Xiangyu]的文章
[Wang,Yejing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。