题名 | Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution |
作者 | Zhang,Aoxing1,2 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
通讯作者 | Fu,Tzung May; Fu,Tzung May |
发表日期 | 2023-04-28
|
DOI | |
发表期刊 | |
ISSN | 0094-8276
|
EISSN | 1944-8007
|
卷号 | 50期号:8 |
摘要 | The impacts of weather forecast uncertainties have not been quantified in current air quality forecasting systems. To address this, we developed an efficient 2-D convolutional neural network-surface ozone ensemble forecast (2DCNN-SOEF) system using 2-D convolutional neural network and weather ensemble forecasts, and we applied the system to 216-hr ozone forecasts in Shenzhen, China. The 2DCNN-SOEF demonstrated comparable performance to current operating forecast systems and met the air quality level forecast accuracies required by the Chinese authorities up to 144-hr lead time. Uncertainties in weather forecasts contributed 38%–54% of the ozone forecast errors at 24-hr lead time and beyond. The 2DCNN-SOEF enabled an “ozone exceedance probability” metric, which better represented the risks of air pollution given the range of possible weather outcomes. Our ensemble forecast framework can be extended to operationally forecast other meteorology-dependent environmental risks globally, making it a valuable tool for environmental management. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 第一
|
资助项目 | Guangdong Basic and Applied Basic Research Foundation[
|
WOS研究方向 | Geology
|
WOS类目 | Geosciences, Multidisciplinary
|
WOS记录号 | WOS:000973047200001
|
出版者 | |
EI入藏号 | 20232014081595
|
EI主题词 | Air Quality
; Convolution
; Convolutional Neural Networks
; Environmental Management
; Ozone
; Weather Forecasting
|
EI分类号 | Meteorology:443
; Air Pollution Control:451.2
; Environmental Engineering, General:454.1
; Environmental Impact And Protection:454.2
; Ergonomics And Human Factors Engineering:461.4
; Information Theory And Signal Processing:716.1
; Chemical Products Generally:804
|
ESI学科分类 | GEOSCIENCES
|
Scopus记录号 | 2-s2.0-85158953286
|
来源库 | Scopus
|
出版状态 | 正式出版
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536589 |
专题 | 工学院_环境科学与工程学院 工学院_计算机科学与工程系 |
作者单位 | 1.Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China 2.Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China 3.National Center for Applied Mathematics,Shenzhen (NCAMS),Shenzhen,China 4.John A. Paulson School of Engineering and Applied Sciences,Harvard University,Cambridge,United States 5.Shenzhen Ecology and Environment Monitoring Centre of Guangdong Province,Shenzhen,China 6.Department of Computer Science and Technology,Tsinghua University,Beijing,China 7.Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,Beijing,China 8.Shenzhen National Climate Observatory,Shenzhen,China 9.Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China 10.Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China 11.National Center for Applied Mathematics,Shenzhen (NCAMS),Shenzhen,China 12.John A. Paulson School of Engineering and Applied Sciences,Harvard University,Cambridge,United States 13.Shenzhen Ecology and Environment Monitoring Centre of Guangdong Province,Shenzhen,China 14.Department of Computer Science and Technology,Tsinghua University,Beijing,China 15.Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,Beijing,China 16.Shenzhen National Climate Observatory,Shenzhen,China |
第一作者单位 | 环境科学与工程学院 |
第一作者的第一单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Zhang,Aoxing,Fu,Tzung May,Feng,Xu,et al. Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution[J]. Geophysical Research Letters,2023,50(8).
|
APA |
Zhang,Aoxing.,Fu,Tzung May.,Feng,Xu.,Guo,Jianfeng.,Liu,Chanfang.,...&Lu,Chao.(2023).Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution.Geophysical Research Letters,50(8).
|
MLA |
Zhang,Aoxing,et al."Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution".Geophysical Research Letters 50.8(2023).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
67 202304 Geophysica(813KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论