中文版 | English
题名

Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution

作者
通讯作者Fu,Tzung May; Fu,Tzung May
发表日期
2023-04-28
DOI
发表期刊
ISSN
0094-8276
EISSN
1944-8007
卷号50期号:8
摘要

The impacts of weather forecast uncertainties have not been quantified in current air quality forecasting systems. To address this, we developed an efficient 2-D convolutional neural network-surface ozone ensemble forecast (2DCNN-SOEF) system using 2-D convolutional neural network and weather ensemble forecasts, and we applied the system to 216-hr ozone forecasts in Shenzhen, China. The 2DCNN-SOEF demonstrated comparable performance to current operating forecast systems and met the air quality level forecast accuracies required by the Chinese authorities up to 144-hr lead time. Uncertainties in weather forecasts contributed 38%–54% of the ozone forecast errors at 24-hr lead time and beyond. The 2DCNN-SOEF enabled an “ozone exceedance probability” metric, which better represented the risks of air pollution given the range of possible weather outcomes. Our ensemble forecast framework can be extended to operationally forecast other meteorology-dependent environmental risks globally, making it a valuable tool for environmental management.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
第一
资助项目
Guangdong Basic and Applied Basic Research Foundation[
WOS研究方向
Geology
WOS类目
Geosciences, Multidisciplinary
WOS记录号
WOS:000973047200001
出版者
EI入藏号
20232014081595
EI主题词
Air Quality ; Convolution ; Convolutional Neural Networks ; Environmental Management ; Ozone ; Weather Forecasting
EI分类号
Meteorology:443 ; Air Pollution Control:451.2 ; Environmental Engineering, General:454.1 ; Environmental Impact And Protection:454.2 ; Ergonomics And Human Factors Engineering:461.4 ; Information Theory And Signal Processing:716.1 ; Chemical Products Generally:804
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85158953286
来源库
Scopus
出版状态
正式出版
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536589
专题工学院_环境科学与工程学院
工学院_计算机科学与工程系
作者单位
1.Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.National Center for Applied Mathematics,Shenzhen (NCAMS),Shenzhen,China
4.John A. Paulson School of Engineering and Applied Sciences,Harvard University,Cambridge,United States
5.Shenzhen Ecology and Environment Monitoring Centre of Guangdong Province,Shenzhen,China
6.Department of Computer Science and Technology,Tsinghua University,Beijing,China
7.Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,Beijing,China
8.Shenzhen National Climate Observatory,Shenzhen,China
9.Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
10.Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
11.National Center for Applied Mathematics,Shenzhen (NCAMS),Shenzhen,China
12.John A. Paulson School of Engineering and Applied Sciences,Harvard University,Cambridge,United States
13.Shenzhen Ecology and Environment Monitoring Centre of Guangdong Province,Shenzhen,China
14.Department of Computer Science and Technology,Tsinghua University,Beijing,China
15.Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,Beijing,China
16.Shenzhen National Climate Observatory,Shenzhen,China
第一作者单位环境科学与工程学院
第一作者的第一单位环境科学与工程学院
推荐引用方式
GB/T 7714
Zhang,Aoxing,Fu,Tzung May,Feng,Xu,et al. Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution[J]. Geophysical Research Letters,2023,50(8).
APA
Zhang,Aoxing.,Fu,Tzung May.,Feng,Xu.,Guo,Jianfeng.,Liu,Chanfang.,...&Lu,Chao.(2023).Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution.Geophysical Research Letters,50(8).
MLA
Zhang,Aoxing,et al."Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution".Geophysical Research Letters 50.8(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
67 202304 Geophysica(813KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Aoxing]的文章
[Fu,Tzung May]的文章
[Feng,Xu]的文章
百度学术
百度学术中相似的文章
[Zhang,Aoxing]的文章
[Fu,Tzung May]的文章
[Feng,Xu]的文章
必应学术
必应学术中相似的文章
[Zhang,Aoxing]的文章
[Fu,Tzung May]的文章
[Feng,Xu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。