中文版 | English
题名

A Self-Rectifying Synaptic Memristor Array with Ultrahigh Weight Potentiation Linearity for a Self-Organizing-Map Neural Network

作者
通讯作者Cheng,Chuantong; Huang,Beiju; Zhou,Feichi
发表日期
2023-04-26
DOI
发表期刊
ISSN
1530-6984
EISSN
1530-6992
卷号23期号:8页码:3107-3115
摘要
Two-terminal self-rectifying (SR)-synaptic memristors are preeminent candidates for high-density and efficient neuromorphic computing, especially for future three-dimensional integrated systems, which can self-suppress the sneak path current in crossbar arrays. However, SR-synaptic memristors face the critical challenges of nonlinear weight potentiation and steep depression, hindering their application in conventional artificial neural networks (ANNs). Here, a SR-synaptic memristor (Pt/NiO/WO:Ti/W) and cross-point array with sneak path current suppression features and ultrahigh-weight potentiation linearity up to 0.9997 are introduced. The image contrast enhancement and background filtering are demonstrated on the basis of the device array. Moreover, an unsupervised self-organizing map (SOM) neural network is first developed for orientation recognition with high recognition accuracy (0.98) and training efficiency and high resilience toward both noises and steep synaptic depression. These results solve the challenges of SR memristors in the conventional ANN, extending the possibilities of large-scale oxide SR-synaptic arrays for high-density, efficient, and accurate neuromorphic computing.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China["62104091","52273246","61675191","61904173","61974099","62022081","61634006"] ; National Key R&D Program of China[2018YFA0209000] ; Guangdong Natural Science Founda-tion[2022A1515011064] ; Young Innovative Talent Project Research Program[2021KQNCX077] ; Shenzhen Fundamental Research Program[JCYJ20220530115204009] ; Youth Innovation Promotion Association of the Chinese Academy of Sciences["2018146","2022109"]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号
WOS:000971989300001
出版者
EI入藏号
20231613900289
EI主题词
Conformal mapping ; Image enhancement ; Memristors
EI分类号
Semiconductor Devices and Integrated Circuits:714.2
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85152644954
来源库
Scopus
引用统计
被引频次[WOS]:25
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536594
专题工学院_深港微电子学院
作者单位
1.School of Microelectronics,Southern University of Science and Technology,Shenzhen,518000,China
2.The State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing,100083,China
3.College of Materials Science and Optoelectronic Technology,University of Chinese Academy of Sciences,Beijing,100049,China
4.Department of Applied Physics,The Hong Kong Polytechnic University,Hong Kong,999077,Hong Kong
第一作者单位深港微电子学院
通讯作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Zhang,Hengjie,Jiang,Biyi,Cheng,Chuantong,et al. A Self-Rectifying Synaptic Memristor Array with Ultrahigh Weight Potentiation Linearity for a Self-Organizing-Map Neural Network[J]. Nano Letters,2023,23(8):3107-3115.
APA
Zhang,Hengjie.,Jiang,Biyi.,Cheng,Chuantong.,Huang,Beiju.,Zhang,Huan.,...&Zhou,Feichi.(2023).A Self-Rectifying Synaptic Memristor Array with Ultrahigh Weight Potentiation Linearity for a Self-Organizing-Map Neural Network.Nano Letters,23(8),3107-3115.
MLA
Zhang,Hengjie,et al."A Self-Rectifying Synaptic Memristor Array with Ultrahigh Weight Potentiation Linearity for a Self-Organizing-Map Neural Network".Nano Letters 23.8(2023):3107-3115.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Hengjie]的文章
[Jiang,Biyi]的文章
[Cheng,Chuantong]的文章
百度学术
百度学术中相似的文章
[Zhang,Hengjie]的文章
[Jiang,Biyi]的文章
[Cheng,Chuantong]的文章
必应学术
必应学术中相似的文章
[Zhang,Hengjie]的文章
[Jiang,Biyi]的文章
[Cheng,Chuantong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。