中文版 | English
题名

How Can Deep Neural Networks Aid Visualization Perception Research? Three Studies on Correlation Judgments in Scatterplots

作者
DOI
发表日期
2023-04-19
会议名称
CHI conference on Human Factors in Computing Systems (CHI)
会议录名称
会议日期
APR 23-28, 2023
会议地点
null,Hamburg,GERMANY
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
How deep neural networks can aid visualization perception research is a wide-open question. This paper provides insights from three perspectives - prediction, generalization, and interpretation - via training and analyzing deep convolutional neural networks on human correlation judgments in scatterplots across three studies. The first study assesses the accuracy of twenty-nine neural network architectures in predicting human judgments, finding that a subset of the architectures (e.g., VGG-19) has comparable accuracy to the best-performing regression analyses in prior research. The second study shows that the resulting models from the first study display better generalizability than prior models on two other judgment datasets for different scatterplot designs. The third study interprets visual features learned by a convolutional neural network model, providing insights about how the model makes predictions, and identifies potential features that could be investigated in human correlation perception studies. Together, this paper suggests that deep neural networks can serve as a tool for visualization perception researchers in devising potential empirical study designs and hypothesizing about perpetual judgments. The preprint, data, code, and training logs are available at https://doi.org/10.17605/osf.io/exa8m.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
NSF["2127309","IIS-2107409","IIS-1815587"]
WOS研究方向
Computer Science ; Robotics
WOS类目
Computer Science, Information Systems ; Computer Science, Theory & Methods ; Robotics
WOS记录号
WOS:001037809507032
EI入藏号
20232214151193
EI主题词
Convolution ; Forecasting ; Network architecture ; Neural network models ; Regression analysis ; Visualization
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85160004667
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536601
专题南方科技大学
作者单位
1.Northwestern University,Evanston,United States
2.Southern University of Science and Technology,Shenzhen,China
3.Worcester Polytechnic Institute,Worcester,United States
4.Brown University,Providence,United States
推荐引用方式
GB/T 7714
Yang,Fumeng,Ma,Yuxin,Harrison,Lane,et al. How Can Deep Neural Networks Aid Visualization Perception Research? Three Studies on Correlation Judgments in Scatterplots[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Fumeng]的文章
[Ma,Yuxin]的文章
[Harrison,Lane]的文章
百度学术
百度学术中相似的文章
[Yang,Fumeng]的文章
[Ma,Yuxin]的文章
[Harrison,Lane]的文章
必应学术
必应学术中相似的文章
[Yang,Fumeng]的文章
[Ma,Yuxin]的文章
[Harrison,Lane]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。