中文版 | English
题名

Non-Hermitian boundary spectral winding

作者
发表日期
2023-04-15
DOI
发表期刊
ISSN
2469-9950
EISSN
2469-9969
卷号107期号:16
摘要
Spectral winding of complex eigenenergies represents a topological aspect unique in non-Hermitian systems, which vanishes in one-dimensional (1D) systems under the open boundary conditions (OBC). In this Letter, we discover a boundary spectral winding in two-dimensional non-Hermitian systems under the OBC, originating from the interplay between Hermitian boundary localization and non-Hermitian nonreciprocal pumping. Such a nontrivial boundary topology is demonstrated in a non-Hermitian breathing Kagome model with a triangle geometry, whose 1D boundary mimics a 1D non-Hermitian system under the periodic boundary conditions with nontrivial spectral winding. In a trapezoidal geometry, this boundary spectral winding can even coexist with corner accumulation of edge states, instead of extended ones along the 1D boundary of a triangle geometry. An OBC type of hybrid skin-topological effect may also emerge in a trapezoidal geometry, provided the boundary spectral winding completely vanishes. By studying the Green's function, we unveil that the boundary spectral winding can be detected from a topological response of the system to a local driving field, offering a realistic method to extract the nontrivial boundary topology for experimental studies.
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
其他
资助项目
National Natural Science Foundation of China[12104519] ; Guangdong Basic and Applied Basic Research Foundation[2020A1515110773]
WOS研究方向
Materials Science ; Physics
WOS类目
Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号
WOS:000970377800003
出版者
EI入藏号
20231713949051
EI主题词
Boundary conditions ; Geometry ; Winding
EI分类号
Materials Handling Methods:691.2 ; Mathematics:921 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85152940300
来源库
Scopus
引用统计
被引频次[WOS]:14
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536611
专题量子科学与工程研究院
理学院_物理系
作者单位
1.Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing,School of Physics and Astronomy,Sun Yat-Sen University,Zhuhai,Zhuhai Campus,519082,China
2.Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.International Quantum Academy,Shenzhen,518048,China
4.Guangdong Provincial Key Laboratory of Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Ou,Zuxuan,Wang,Yucheng,Li,Linhu. Non-Hermitian boundary spectral winding[J]. Physical Review B,2023,107(16).
APA
Ou,Zuxuan,Wang,Yucheng,&Li,Linhu.(2023).Non-Hermitian boundary spectral winding.Physical Review B,107(16).
MLA
Ou,Zuxuan,et al."Non-Hermitian boundary spectral winding".Physical Review B 107.16(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ou,Zuxuan]的文章
[Wang,Yucheng]的文章
[Li,Linhu]的文章
百度学术
百度学术中相似的文章
[Ou,Zuxuan]的文章
[Wang,Yucheng]的文章
[Li,Linhu]的文章
必应学术
必应学术中相似的文章
[Ou,Zuxuan]的文章
[Wang,Yucheng]的文章
[Li,Linhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。