中文版 | English
题名

STOCHASTIC LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEMS WITH RANDOM COEFFICIENTS AND MARKOVIAN REGIME SWITCHING SYSTEM

作者
通讯作者Zhang,Xin
发表日期
2023-04-01
DOI
发表期刊
ISSN
0363-0129
EISSN
1095-7138
卷号61期号:2页码:949-979
摘要
This paper thoroughly investigates stochastic linear-quadratic optimal control problems with the Markovian regime switching system, where the coefficients of the state equation and the weighting matrices of the cost functional are random. We prove the solvability of the stochastic Riccati equation under the uniform convexity condition and obtain the closed-loop representation of the open-loop optimal control using the unique solvability of the corresponding stochastic Riccati equation. Moreover, by applying Itô's formula with jumps, we get a representation of the cost functional on a Hilbert space, characterized as the adapted solutions of some forward-backward stochastic differential equations. We show that the necessary condition of the open-loop optimal control is the convexity of the cost functional, and the sufficient condition of the open-loop optimal control is the uniform convexity of the cost functional. In addition, we study the properties of the stochastic value flow of the stochastic linear-quadratic optimal control problem. Finally, as an application, we present a continuous-time mean-variance portfolio selection problem and prove its unique solvability.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
National Natural Science Foundation of China[11831010];National Natural Science Foundation of China[12101291];National Natural Science Foundation of China[12171086];Ocean Park Conservation Foundation, Hong Kong[15215319];Ocean Park Conservation Foundation, Hong Kong[15216720];Ocean Park Conservation Foundation, Hong Kong[15221621];Applied Basic Research Foundation of Yunnan Province[2022A1515012017];National Key Research and Development Program of China[2022YFA1006102];National Key Research and Development Program of China[2022YFA1006102];Fundamental Research Funds for the Central Universities[2242021R41082];Ocean Park Conservation Foundation, Hong Kong[4-ZZHX];
WOS研究方向
Automation & Control Systems ; Mathematics
WOS类目
Automation & Control Systems ; Mathematics, Applied
WOS记录号
WOS:000995819400020
出版者
EI入藏号
20232114136499
EI主题词
Continuous time systems ; Costs ; Equations of state ; Optimal control systems ; Quadratic programming ; Riccati equations
EI分类号
Control Systems:731.1 ; Cost and Value Engineering; Industrial Economics:911 ; Calculus:921.2 ; Systems Science:961
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85159765684
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536615
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Department of Mathematics,SUSTech International Center for Mathematics,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
2.Department of Applied Mathematics,Hong Kong Polytechnic University,Hong Kong
3.School of Mathematics,Southeast University,Nanjing,Jiangsu Province,211189,China
第一作者单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
第一作者的第一单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Wen,Jiaqiang,Li,Xun,Xiong,Jie,et al. STOCHASTIC LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEMS WITH RANDOM COEFFICIENTS AND MARKOVIAN REGIME SWITCHING SYSTEM[J]. SIAM Journal on Control and Optimization,2023,61(2):949-979.
APA
Wen,Jiaqiang,Li,Xun,Xiong,Jie,&Zhang,Xin.(2023).STOCHASTIC LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEMS WITH RANDOM COEFFICIENTS AND MARKOVIAN REGIME SWITCHING SYSTEM.SIAM Journal on Control and Optimization,61(2),949-979.
MLA
Wen,Jiaqiang,et al."STOCHASTIC LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEMS WITH RANDOM COEFFICIENTS AND MARKOVIAN REGIME SWITCHING SYSTEM".SIAM Journal on Control and Optimization 61.2(2023):949-979.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wen,Jiaqiang]的文章
[Li,Xun]的文章
[Xiong,Jie]的文章
百度学术
百度学术中相似的文章
[Wen,Jiaqiang]的文章
[Li,Xun]的文章
[Xiong,Jie]的文章
必应学术
必应学术中相似的文章
[Wen,Jiaqiang]的文章
[Li,Xun]的文章
[Xiong,Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。