题名 | Accurate transcriptome-wide identification and quantification of alternative polyadenylation from RNA-seq data with APAIQ |
作者 | |
通讯作者 | Zhang,Bin; Chen,Wei; Gao,Xin |
共同第一作者 | Long,Yongkang; Zhang,Bin; Tian,Shuye |
发表日期 | 2023-04-01
|
DOI | |
发表期刊 | |
EISSN | 1549-5469
|
卷号 | 33期号:4页码:644-657 |
摘要 | Alternative polyadenylation (APA) enables a gene to generate multiple transcripts with different 3' ends, which is dynamic across different cell types or conditions. Many computational methods have been developed to characterize sample-specific APA using the corresponding RNA-seq data, but suffered from high error rate on both polyadenylation site (PAS) identification and quantification of PAS usage (PAU), and bias toward 3' untranslated regions. Here we developed a tool for APA identification and quantification (APAIQ) from RNA-seq data, which can accurately identify PAS and quantify PAU in a transcriptome-wide manner. Using 3' end-seq data as the benchmark, we showed that APAIQ outperforms current methods on PAS identification and PAU quantification, including DaPars2, Aptardi, mountainClimber, SANPolyA, and QAPA. Finally, applying APAIQ on 421 RNA-seq samples from liver cancer patients, we identified >540 tumor-associated APA events and experimentally validated two intronic polyadenylation candidates, demonstrating its capacity to unveil cancer-related APA with a large-scale RNA-seq data set. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 共同第一
; 通讯
|
ESI学科分类 | MOLECULAR BIOLOGY & GENETICS
|
Scopus记录号 | 2-s2.0-85159736042
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536617 |
专题 | 生命科学学院_系统生物学系 生命科学学院 南方科技大学医学院 |
作者单位 | 1.Computer Science Program,Computer,Electrical and Mathematical Sciences and Engineering Division,King Abdullah University of Science and Technology (KAUST),Thuwal,23955,Saudi Arabia 2.Computational Bioscience Research Center,King Abdullah University of Science and Technology,Thuwal,23955,Saudi Arabia 3.Shenzhen Key Laboratory of Gene Regulation and Systems Biology,Department of Systems Biology,School of Life Sciences,Southern University of Science and Technology,Shenzhen,518055,China 4.Cancer Science Institute of Singapore,National University of Singapore,117599,Singapore 5.Shenzhen Haoshi Biotechnology Company,Limited,Bao An District,Shenzhen,518000,China 6.Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia; xin.gao@kaust.edu.sa chenw@sustech.edu.cn zb.picb@gmail.com 7.Syneron Technology,Guangzhou,510535,China 8.Institute of Computing Technology,Chinese Academy of Sciences,100190,China 9.Systems Biology Lab for Metabolic Reprogramming,School of Medicine,Southern University of Science and Technology,Shenzhen,518055,China 10.Department of Biochemistry,Yong Loo Lin School of Medicine,National University of Singapore,117597,Singapore |
通讯作者单位 | 系统生物学系; 生命科学学院 |
推荐引用方式 GB/T 7714 |
Long,Yongkang,Zhang,Bin,Tian,Shuye,et al. Accurate transcriptome-wide identification and quantification of alternative polyadenylation from RNA-seq data with APAIQ[J]. Genome research,2023,33(4):644-657.
|
APA |
Long,Yongkang.,Zhang,Bin.,Tian,Shuye.,Chan,Jia Jia.,Zhou,Juexiao.,...&Gao,Xin.(2023).Accurate transcriptome-wide identification and quantification of alternative polyadenylation from RNA-seq data with APAIQ.Genome research,33(4),644-657.
|
MLA |
Long,Yongkang,et al."Accurate transcriptome-wide identification and quantification of alternative polyadenylation from RNA-seq data with APAIQ".Genome research 33.4(2023):644-657.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论