中文版 | English
题名

Efficient Uncertainty Propagation in Model-Based Reinforcement Learning Unmanned Surface Vehicle Using Unscented Kalman Filter

作者
通讯作者Cui,Yunduan
发表日期
2023-04-01
DOI
发表期刊
EISSN
2504-446X
卷号7期号:4
摘要
This article tackles the computational burden of propagating uncertainties in the model predictive controller-based policy of the probabilistic model-based reinforcement learning (MBRL) system for an unmanned surface vehicles system (USV). We proposed filtered probabilistic model predictive control using the unscented Kalman filter (FPMPC-UKF) that introduces the unscented Kalman filter (UKF) for a more efficient uncertainty propagation in MBRL. A USV control system based on FPMPC-UKF is developed and evaluated by position-keeping and target-reaching tasks in a real USV data-driven simulation. The experimental results demonstrate a significant superiority of the proposed method in balancing the control performance and computational burdens under different levels of disturbances compared with the related works of USV, and therefore indicate its potential in more challenging USV scenarios with limited computational resources.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
Science and Technology Development Fund[0015/2019/AKP];VNU Science and Technology Development Fund[0015/2019/AKP];Basic and Applied Basic Research Foundation of Guangdong Province[2020B515130004];National Key Research and Development Program of China[2020YFB2104300];National Natural Science Foundation of China[62103403];
WOS研究方向
Remote Sensing
WOS类目
Remote Sensing
WOS记录号
WOS:000977457900001
出版者
Scopus记录号
2-s2.0-85154056145
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/536633
专题工学院
作者单位
1.Shenzhen Institute of Advanced Technology (SIAT),Chinese Academy of Sciences,Shenzhen,518055,China
2.College of Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.University of Chinese Academy of Sciences,Beijing,100049,China
第一作者单位工学院
推荐引用方式
GB/T 7714
Wang,Jincheng,Xia,Lei,Peng,Lei,et al. Efficient Uncertainty Propagation in Model-Based Reinforcement Learning Unmanned Surface Vehicle Using Unscented Kalman Filter[J]. Drones,2023,7(4).
APA
Wang,Jincheng,Xia,Lei,Peng,Lei,Li,Huiyun,&Cui,Yunduan.(2023).Efficient Uncertainty Propagation in Model-Based Reinforcement Learning Unmanned Surface Vehicle Using Unscented Kalman Filter.Drones,7(4).
MLA
Wang,Jincheng,et al."Efficient Uncertainty Propagation in Model-Based Reinforcement Learning Unmanned Surface Vehicle Using Unscented Kalman Filter".Drones 7.4(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Jincheng]的文章
[Xia,Lei]的文章
[Peng,Lei]的文章
百度学术
百度学术中相似的文章
[Wang,Jincheng]的文章
[Xia,Lei]的文章
[Peng,Lei]的文章
必应学术
必应学术中相似的文章
[Wang,Jincheng]的文章
[Xia,Lei]的文章
[Peng,Lei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。