题名 | Efficient Uncertainty Propagation in Model-Based Reinforcement Learning Unmanned Surface Vehicle Using Unscented Kalman Filter |
作者 | |
通讯作者 | Cui,Yunduan |
发表日期 | 2023-04-01
|
DOI | |
发表期刊 | |
EISSN | 2504-446X
|
卷号 | 7期号:4 |
摘要 | This article tackles the computational burden of propagating uncertainties in the model predictive controller-based policy of the probabilistic model-based reinforcement learning (MBRL) system for an unmanned surface vehicles system (USV). We proposed filtered probabilistic model predictive control using the unscented Kalman filter (FPMPC-UKF) that introduces the unscented Kalman filter (UKF) for a more efficient uncertainty propagation in MBRL. A USV control system based on FPMPC-UKF is developed and evaluated by position-keeping and target-reaching tasks in a real USV data-driven simulation. The experimental results demonstrate a significant superiority of the proposed method in balancing the control performance and computational burdens under different levels of disturbances compared with the related works of USV, and therefore indicate its potential in more challenging USV scenarios with limited computational resources. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Science and Technology Development Fund[0015/2019/AKP];VNU Science and Technology Development Fund[0015/2019/AKP];Basic and Applied Basic Research Foundation of Guangdong Province[2020B515130004];National Key Research and Development Program of China[2020YFB2104300];National Natural Science Foundation of China[62103403];
|
WOS研究方向 | Remote Sensing
|
WOS类目 | Remote Sensing
|
WOS记录号 | WOS:000977457900001
|
出版者 | |
Scopus记录号 | 2-s2.0-85154056145
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/536633 |
专题 | 工学院 |
作者单位 | 1.Shenzhen Institute of Advanced Technology (SIAT),Chinese Academy of Sciences,Shenzhen,518055,China 2.College of Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.University of Chinese Academy of Sciences,Beijing,100049,China |
第一作者单位 | 工学院 |
推荐引用方式 GB/T 7714 |
Wang,Jincheng,Xia,Lei,Peng,Lei,et al. Efficient Uncertainty Propagation in Model-Based Reinforcement Learning Unmanned Surface Vehicle Using Unscented Kalman Filter[J]. Drones,2023,7(4).
|
APA |
Wang,Jincheng,Xia,Lei,Peng,Lei,Li,Huiyun,&Cui,Yunduan.(2023).Efficient Uncertainty Propagation in Model-Based Reinforcement Learning Unmanned Surface Vehicle Using Unscented Kalman Filter.Drones,7(4).
|
MLA |
Wang,Jincheng,et al."Efficient Uncertainty Propagation in Model-Based Reinforcement Learning Unmanned Surface Vehicle Using Unscented Kalman Filter".Drones 7.4(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论